a2 United States Patent

US010114984B2

ao) Patent No.: US 10,114,984 B2

Fowler 45) Date of Patent: Oct. 30, 2018
(54) SYMMETRIC BIT CODING FOR PRINTED (56) References Cited
MEMORY DEVICES
U.S. PATENT DOCUMENTS
(71) Applicant: Xerox Corporation, Norwalk, CT (US) 5,288,981 A * 2/1994 Davis GO6K 19/06187
235/449
(72) Inventor: Jeffrey Michael Fowler, Rochester, NY 5,889,698 A * 3/1999 Miwa ...ooovenrinns GI11C 11/5621
US 365/184
Us) 7,127,004 B1* 10/2006 Sonning HO3M 13/2707
375/295
(73) Assignee: Xerox Corporation, Norwalk, CT (US) 7,286,066 B1* 10/2007 HO ..ovvovovveeerreeerrenn, HO3M 7/40
341/50
(*) Notice: Subject to any disclaimer, the term of this 9,008,234 B2* 42015 KO v H04L3;/50/g‘6‘}
patent is extended or adjusted under 35 2008/0244349 Al* 10/2008 Sukegawa GOGF 13/385
U.S.C. 154(b) by 0 days. 714/746
2011/0154503 Al1* 6/2011 Stewart GOG6F 21/125
(21) Appl. No.: 15/255,435 726/26
’ 2013/0132652 Al* 52013 Woodcccceeven GOGF 12/0246
(22) Filed: Sep. 2, 2016 Continued) 71103
ontinue
. o Primary Examiner — Allyson Trail
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Simpson & Simpson,
US 2017/0068830 A1~ Mar. 9, 2017 PLLC
57 ABSTRACT
.. A printed memory reader adapted to determine an original
Related U.S. Application Data value from a printed memory device including a plurality of
60) Provisional application No. 62/214.606. filed on Sep. contact pads and an encoded value created by encoding the
(60) pp 1606, p ntact p reatec by encocding
4, 2015. original value. The encoded value including N bits of data,
where N is equal to a number of bits of data stored in the
51) Int. Cl printed memory device. The printed memory reader includes
(31) Int. Cl. a plurality of probes arranged to contact the plurality of
gzgg Z) 0/377 888288 contact pads and a memory storage element including
: instructions programmed to execute the steps: a) reading the
(52) US. CL encoded value or an inverse encoded value from the printed
CPC ... GO6K 7/0013 (2013.01); GO6K 19/0772 memory device using the plurality of probes to obtain a read
(2013.01) value; and, b) decoding the read value to obtain a decoded
(58) Field of Classification Search value equal to the original value. The printed memory reader

LO1) & G 235/449, 493; 375/340, 349,
365/185.03, 184
See application file for complete search history.

further includes a processor arranged to execute the instruc-
tions.

20 Claims, 12 Drawing Sheets

Y

20

| —

r
i
1
1
1
LN

..

US 10,114,984 B2
Page 2

(56)

2014/0095956 Al* 4/2014 Ozdemir
2015/0019799 Al* 1/2015 Hig0coovevinne
2016/0057437 Al* 2/2016 Jeong

2017/0186500 Al* 6/2017 Motwani
2018/0012642 Al* 1/2018 Rodriguez-Latorre

References Cited

U.S. PATENT DOCUMENTS

* cited by examiner

GO6F 11/1048

714/755

G11C 7/1006

711/103

HO4N 19/426

375/240.25

G11C 29/44

G11C 11/2273

U.S. Patent Oct. 30, 2018 Sheet 1 of 12 US 10,114,984 B2

40

US 10,114,984 B2

Sheet 2 of 12

Oct. 30, 2018

U.S. Patent

Ni

&

1ok 4 GG o) dn
aij} Aeg

A
o ..\Q}:.l.lii/

KNG T1dys

(W |

LaNd0Hd YiliVHd

i

il

{

VD SONIAYS INVISNE

FWE NG LON- TdW

LD

WS

20

FIG. 3

i
od

|
|

INSTANT BAVINGS CARD

HARMA PRODUCT

e SANPLE ONLY

2 : r///!.ll;e!g{\\\\\\
g) 815 and receive

N
010 343 IOl

{ Y f-pocket expenses
BIM: 710030 GROUR: 88682189 i 83305600327

A

—J

FIG. 4

U.S. Patent Oct. 30, 2018 Sheet 3 of 12 US 10,114,984 B2

/ 24
32

/

MEMORY
STORAGE
ELEMENT

PROCESSOR Y1

//

30 — T
30

RETURNS THE F
0-INDEXED i1 LEAST - R @?é%é ‘ygﬁgﬁg\i
SIGNIFICANT BIT A
LIMITS?
| YES
\ j
L8B = FLOOR{E‘-} 2% FLOOR{%)\\
12/ 12/ //

FIG. 6

U.S. Patent Oct. 30, 2018

REVERSES
STRING

Sheet 4 of 12

StrRev = MID(S, i, 1} & StrRev

4

f+1

US 10,114,984 B2

U.S. Patent Oct. 30, 2018 Sheet 5 of 12 US 10,114,984 B2

ARE

RAND N ™
WITHIN ACCEPTABLE J
. _LIMITS?

CONVERTS NUMERIC i
DATATO ASTRING
OF ""s AND "0 SET BitString TO BLANK

BitString = LSB{R) & BitString

U.S. Patent Oct. 30, 2018 Sheet 6 of 12 US 10,114,984 B2

BitValua(S
\Belels))

A4

BitvValue = 0

CONVERTS A STRING
OF ""s AND "0O"s TO

NUMERIC DATA ¥
=1

A4

Bitvalue = 2 x BitValue

BitValue = (2 x BitValue) +1

¥

U.S. Patent Oct. 30, 2018

(B;tSymEncA-(Q,ND

floor = FLOOR {N/2)

|

ceil = CEILING (N/2)

ARE
G AND N WITHIN

ACCEPTABLE
LIMITS?,

[YES

Sheet 7 of 12

ENCODES DATAFOR
N-bit PRINTED
MEMORY (EMBODIMENT A)

S = BitString{QN)

d=L0G (32)

&
o

1G. 10

US 10,114,984 B2

U.S. Patent Oct. 30, 2018 Sheet 8 of 12 US 10,114,984 B2

x = MID{(S, 2 + floor, floor -1)

|

y="0" & RIGHT(S, ceil - floor} & "1"

k4

i = FLOOR(d - ceil + 1)

ki

x = MID(S, floor - §+2, floor-1- 1)

¥
y="0" & RIGHT(S,2 x i +oeil - fioory & "1"

ki

¥

x = ML S, floor + 1, floor)

¥
y = RIGHT(S, cail - floon)

<,
e

¥

(BitSymEncA = BitValue {x & v & StrRev (1)} >

FIG. 11

U.S. Patent Oct. 30, 2018 Sheet 9 of 12 US 10,114,984 B2

(BitSymDecA(R N}

A

ARE ™~
RAND N WITHIN
ACCEFTABLE
LIMITS?
//

A

YES

BitSymDecA =0 DECODES DATAFOR
I N-bit PRINTED MEMORY
(EMBODIMENT A)

isFalindrome = TRUE

¥

floor = FLOOR{N/Z)

¥

ceif = CEILINGIN/Z)

=

m

(]
s
\Y
&
&
=
s
A

j=i+t

1

BitSymDecA = 2 X BitSymDecA + LSBIR})

S

LSBIRN-1-) =
LSB (R}

~

isPalindrome = FALSE

e o
¥

k=j+1

US 10,114,984 B2

Sheet 10 of 12

Oct. 30, 2018

U.S. Patent

€l Old

¢ 2+ yoaquAgya = yooquhsrg)

_{b-peo+p©

iy

ON

- L
SIA = wwrght.amﬁﬂ\\

{() - %z - NI X (FY)E8T + 41887 + YoeQWASHE X 7 = yoaquwAsig

Oz%

b=

/ A
Km?x <y

mm\f////

ooy = Xelly

Il)lll//
._&Ei!ﬁ/w:m 1= eEo%%_maﬁv

J\

{ooy '/ - 7 - 00 X ZNAOW + | =1

©

o

U.S. Patent Oct. 30, 2018 Sheet 11 of 12 US 10,114,984 B2

ENCODES DATA
FOR N-bit PRINTED
) ~ MEMORY
C BISymEncBIQN)) (EMBODIMENT B)

odd = MOD{N.2)

o
" QAND NWITHIN ™~ _NO ——
S~ ACCEPTABLE Y,
S LIMITS?
Sﬁss

S = BitString{Q.N)

¥

p= Q- odd x CINT (RIGHT (5,11
{1+ odd)

¥

hp= FLOOR(“‘M”* * Sgﬁ" !)

¥

N
f=FLOOR (*-2-)

k4

GitSymEﬂcB = Bstxfa;ue{sétsmng{ﬁp,f} & RIGHT(S,0do) & StrRev (BétString (p »Sﬁ’-"-}-i%}-ﬁ‘-ff? f)m

i
FIG. 14

U.S. Patent Oct. 30, 2018 Sheet 12 of 12 US 10,114,984 B2

DECODES DATA
FOR N-bit PRINTED
: ~ MEMORY

C BitSymDecB(R.N)) (EMBODIMENT B}

¥

odd = MOD(N.2)

ACCEPTABLE
~LIMITS?_—

E’ES

= BitSking(RA)

FAND N WITHIN ERROR)

¥
£= FLOOR(N/2)

¥
a = BitValue (LEFT(S.5)

¥
= BitValus{StrRev{RIGHT(S A))

¥
hp = MAX{(a,b)

¥

@Symbecs (M%N{ab hpxihp)4t + odd) + odd x CINT MaD(s,CEsUNG(%),@

|
FIG. 15

i

US 10,114,984 B2

1
SYMMETRIC BIT CODING FOR PRINTED
MEMORY DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit under 35 U.S.C.
§ 119(e) of U.S. Provisional Patent Application No. 62/214,
606, filed Sep. 4, 2015, which application is incorporated
herein by reference.

TECHNICAL FIELD

The presently disclosed embodiments are directed to
providing bit coding, more particularly to encoding and
decoding N-bit memory devices, and even more particularly
to encoding and decoding N-bit memory devices such that
orientation of a memory device relative to a reader does not
alter the determination of memory device contents.

BACKGROUND

Printed memory (PM) labels and devices are manufac-
tured in a variety of sizes, including twenty (20) bit, which
has a symmetrical arrangement of electrical contacts or
contact pads. An example of a 20-bit PM is depicted in FIG.
1. In some instances, the orientation of label or device 20
and thereby pads 22 relative to reader 24 may be upside
down, either due to symmetry of the carrier body or for
compatibility among multiple configurations (See, e.g., FIG.
3 versus FIG. 4). With the standard configuration of PM
label 20, reader 24 can read and write an upside-down label,
with the effect of reversing the order of the bits.

The present disclosure addresses a method for encoding
and decoding N-bit data so that label to reader orientation
does not alter the determined value of a printed memory
label.

SUMMARY

For an N-bit label, there are 2” possible states, including
mostly non-palindromes and a few palindromes. This leaves
02" distinct states. The present disclosure provides an
encoding mapping f from “data” states to “encoded” states,
and a decoding mapping g from “encoded” states to “data”
states, where g recovers the original data even if the encoded
state is reversed before decoding. In an embodiment, the
present method analyzes a sequence of symmetrically ori-
ented pairs in the encoded state. For each pair, if the bit
values are identical, their shared value is retained and that
embodiment of the present algorithm moves to the next pair.
If the bit values in a pair are not identical, they are used to
establish a reading direction and the remaining bits are
collected as a group. Each pairwise comparison is a diction-
ary split, catching half as many cases as the previous
comparison, until the only remaining values are palin-
dromes.

In another embodiment, distinct encoded states are enu-
merated to establish a mapping. Specifically, those encoded
states which are not less than their reverse are listed in a
particular order based on triangular numbers. To encode a
data state for a label with an even number of bits, the largest
triangular number less than or equal to the data state is
computed. The index of the triangular number is used for the
first half of the encoded state, and the second half of the
encoded state is given by the reverse of the remainder when
the triangular number is subtracted from the data state. For

10

15

20

25

30

35

40

45

50

55

60

65

2

a label with an odd number of bits, the least significant bit
is placed in the center of the encoded state, and the rest of
the encoded state is computed based on the even number of
remaining bits. To decode an encoded state from a label with
an even number of bits, the larger of the encoded state or its
reverse is used. The triangular number indexed by the first
half of the resulting state is computed. To this is added the
reverse of the second half. For a label with an odd number
of bits, the center bit is appended to the sum calculated from
the even number of remaining bits.

The present disclosure sets forth an embodiment of this
type, using a formulation that works for both odd and even
values of N, as well as being directly extendible to cover the
entire set of solutions to the problem statement via trans-
formations including permutation transformations, symmet-
ric bit-swapping transformations and symmetric bit-flipping
transformations. Selection from among this family may be
useful for mild encryption, i.e., to make the coding specific
to a particular application, device, or user.

Broadly, the present disclosure sets forth a printed
memory reader adapted to determine an original value from
a printed memory device including a plurality of contact
pads and an encoded value created by encoding the original
value. The encoded value includes N bits of data, where N
is equal to a number of bits of data stored in the printed
memory device. The printed memory reader includes a
plurality of probes arranged to contact the plurality of
contact pads and a memory storage element including
instructions programmed to execute the steps: a) reading the
encoded value or an inverse encoded value from the printed
memory label using the plurality of probes to obtain a read
value; and, b) decoding the read value to obtain a decoded
value equal to the original value. The printed memory reader
further includes a processor arranged to execute the instruc-
tions.

Additionally, the present disclosure sets forth a printed
memory reader adapted to determine a first value from a
printed memory device including a plurality of contact pads
and a second value created by encoding the first value. The
second value including N bits of data, where N is equal to
anumber of bits of data stored in the printed memory device.
The printed memory reader includes a plurality of probes
arranged to contact the plurality of contact pads and a
memory storage element comprising instructions pro-
grammed to execute the steps: a) reading a third value from
the printed memory label using the plurality of probes,
wherein the third value is equal to the second value or an
inverse of the second value; and, b) decoding the third value
to obtain a fourth value equal to the first value. The printed
memory reader further includes a processor arranged to
execute the instructions.

Moreover, the present disclosure sets forth a method of
using a printed memory device for storage and retrieval of
an original value. The method includes: a) encoding the
original value to form an encoded value having N bits of
data, where N is equal to a number of bits of data stored in
the printed memory device, such that an alternate value
cannot yield an alternate encoded value equal to the encoded
value or an inverse encoded value; and, b) storing the
encoded value on the printed memory device. In some
embodiments, the method further includes: c) reading the
encoded value using a printed memory reader to obtain a
read value, wherein the read value is the encoded value or
the inverse encoded value; and, d) decoding the read value
to obtain the original value.

US 10,114,984 B2

3

Other objects, features and advantages of one or more
embodiments will be readily appreciable from the following
detailed description and from the accompanying drawings
and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are disclosed, by way of example
only, with reference to the accompanying drawings in which
corresponding reference symbols indicate corresponding
parts, in which:

FIG. 1 is a top plan view of an embodiment of a 20-bit
printed memory device;

FIG. 2 is a top plan view of an embodiment of a 20-bit
printed memory device having connections arranged in an
asymmetric pattern to indicate orientation;

FIG. 3 is a top plan view of an embodiment of a printed
memory device entering a reader in a first orientation; and,

FIG. 4 is a top plan view of an embodiment of a printed
memory device entering a reader in a second orientation one
hundred eighty (180) degrees rotated relative to the first
orientation;

FIG. 5 is a cross-sectional schematic view of an embodi-
ment of a printed memory device reader;

FIG. 6 is a flowchart depicting an embodiment of an
algorithm for returning the 0-indexed j* least significant bit;

FIG. 7 is a flowchart depicting an embodiment of an
algorithm for reversing a string;

FIG. 8 is a flowchart depicting an embodiment of an
algorithm for converting numeric data to a string of “1”s and
“0”s;

FIG. 9 is a flowchart depicting an embodiment of an
algorithm for converting a string of “1”’s and “0”’s to numeric
data;

FIG. 10 is a first portion of a flowchart depicting an
embodiment of an algorithm for encoding data from N-bit
memory, e.g., N-bit printed memory;

FIG. 11 is a second portion of a flowchart depicting the
embodiment of the algorithm for encoding data from N-bit
memory, e.g., N-bit printed memory, shown in FIG. 9;

FIG. 12 is a first portion of a flowchart depicting an
embodiment of an algorithm for decoding data for N-bit
memory, e.g., N-bit printed memory;

FIG. 13 is a second portion of a flowchart depicting the
embodiment of the algorithm for decoding data for N-bit
memory, e.g., N-bit printed memory, shown in FIG. 11;

FIG. 14 is a flowchart depicting an embodiment of an
algorithm for encoding data from N-bit memory, e.g., N-bit
printed memory; and,

FIG. 15 is a flowchart depicting an embodiment of an
algorithm for decoding data for N-bit memory, e.g., N-bit
printed memory.

DETAILED DESCRIPTION

At the outset, it should be appreciated that like drawing
numbers on different drawing views identify identical, or

10

15

20

25

30

35

40

45

50

55

60

65

4

functionally similar, structural elements of the embodiments
set forth herein. Furthermore, it is understood that these
embodiments are not limited to the particular methodolo-
gies, materials and modifications described and as such may,
of course, vary. It is also understood that the terminology
used herein is for the purpose of describing particular
aspects only, and is not intended to limit the scope of the
disclosed embodiments, which are limited only by the
appended claims.

Unless defined otherwise, all technical and scientific

terms used herein have the same meaning as commonly
understood to one of ordinary skill in the art to which these
embodiments belong.

As used herein, the term “inverse”, when in conjunction
with a string or binary value, e.g., the inverse of a read value
or the inverse read value, is intended to mean the reverse
order of a particular value. For example, if a read value is
“010011017, an inverse of the read value or the inverse read
value is “10110010”. Moreover, as used herein, the term
“palindrome” is intended to mean a number or sequence of
characters which reads the same backwards as forwards. For
example, read values of “10011011001” and “1100110011”
are both palindrome values. Furthermore, as used herein, the
term ‘average’ shall be construed broadly to include any
calculation in which a result datum or decision is obtained
based on a plurality of input data, which can include but is
not limited to, weighted averages, yes or no decisions based
on rolling inputs, etc.

Additionally, as used herein, a “truncated value” is
intended to mean a string or binary value having its terminal
bit removed. For example, the truncated value for the binary
value “10110010” is “1011001”. Furthermore, as used
herein, a “diminished value” is intended to mean a string or
binary value having its center bit removed. For example, the
diminished value for the binary value “1011001” is
“101001”.

Moreover, although any methods, devices or materials
similar or equivalent to those described herein can be used
in the practice or testing of these embodiments, some
embodiments of methods, devices, and materials are now
described.

The various embodiments of the basic algorithm
described herein has been implemented as Excel® functions
in Visual Basic for Applications (VBA), together with a
small set of more general functions for handling binary
numbers. The current implementations handle numbers up
to 49 bits, since this is the precision that can be stored in a
single numeric Excel® cell. However, it should be appre-
ciated that the present algorithms may include support for
larger numbers of bits by storing the data in strings, and/or
using a more sophisticated programming language to speed
up encoding and decoding operations, e.g., C++ program-
ming language.

The present algorithms provide a method by which a
single reader module, e.g., reader 24, may be used for
multiple configurations of printed memory device, e.g.,
wallet cards 26 and 28. The PM will be written with the
wallet card integrated into a display card, as shown in cards
26 and 28 in FIGS. 3 and 4. The PM may then be read in this
configuration, or the wallet card may be punched out along
a semi-perf before reading the PM. By using reversed
orientations, the two card configurations may each be reg-
istered appropriately to align the PM label with contacts
within reader 24.

US 10,114,984 B2

S

It should be appreciated that the embodiments described
herein may be implemented with a printed memory reader.
Reader 24 may include a plurality of probes 30 arranged to
contact a plurality of contact pads 22. Reader 24 may further
include memory storage element 32 including instructions
programmed to execute the steps of the various embodi-
ments set forth herebelow. Printed memory reader 24 further
comprises processor 34 arranged to execute the aforemen-
tioned instructions.

Notation

[A ... B) will represent the set {xEZ:A<x<B} where Z
is the set of integers. Specifically, [0 . . . N) will represent
the set of cardinality N representing the non-negative inte-
gers strictly less than N. If B<A, then [A . . . B) is the empty
set. The modulus function is defined such that O=x(mod b)<b
and x=k-b+x(mod b) for some k&Z. The floor function is

defined by |x] ix—x(mod 1). The ceiling function is simi-

larly defined by [x]2 - —x|. A mapping f from set U to set
V will be declared as f:U—V. A composition of mappings
f:U—V and g:T—U will be denoted f*g:T—V. The inverse
off, if it exists, will of course be written as f~' with the
identity mapping I, so that =1 *f=f*f~'=1. A binary number
with N digits will be represented by X, The concatenation
of two binary numbers is defined according to

X 0¥ an) 2 (x~2M+y)(N+M). The specific mapping r is defined
as the bit-reversal mapping, which may be defined recur-

sively by (rx)(l);x(l) and 1(Xan 0¥ () 7LY (an 01Xy The tri-
angular numbers t, are given by

glg+1)
h=—5—"

Problem Statement
For an N-bit label, the possible states are |0 . . . 2™). Of
these 2% states,

25

are palindromes, i.e., they are invariant under bit-reversal.
That leaves

¥ _of%]

non-palindrome states. Each of these is indistinguishable
from one other non-palindrome state with the same bits in
reversed order. That means there are

2vt o5

distinct non-palindrome states when the orientation of the
label is not known. The total number of distinct states under
this condition is then

oN=1 o151 4ol 51 2 on-1 o310 = 2({%—1).(21% +1),

10

15

20

25

30

35

40

45

50

55

60

65

6

This means that we seek an encoding mapping

7fo.. ot +2([%’171)) S0 ... 2Y
and a decoding mapping g

N

0...2% > [0 LN +z([ﬂ*1))

such that g*f=g*r*f=I. In practice, there are a large number
of choices of f and

N1
g~ (z(Nfl) +2([,,ﬂ2£171))! IZ[Z(NA),Z(DW 1)]

to be exact, although we will consider functions f, and f, to
be equivalent when

Vxelo.. 2ty z(["hﬁ’l))(flx = HAV fix = %),
This reduces the space of mapping functions to

o1 ol 30
()

choices of f and allows us to consider g to be the inverse of
f We will describe two embodiments in particular which are
readily characterized in terms of N, then extend them to
more general embodiments.

Embodiment A

The embodiment presented herebelow builds on one of
the alternative strategies presented infra, i.e., Strategy 2.
First, Strategy 2 is examined with the notation set forth
above:

Number of Number of

Data data states Encoded Reversed code states
N-2 N-1
Xovay 207 O “Xavy "1y Loy * vy © Oy 2870

Clearly, half of the 2V available code states are not being
used, so Strategy 2 is inefficient. Specifically, the
0¢1y0X x_2,00(,y and l(l)ox.(N_z)ol(l)) code states do not code
for any data state under this scheme. As a result, only 2¢¥=
of the theoretical

oML ol 511

distinguishable data states can be encoded, i.e., a waste of
slightly more than one bit.

Embodiment A is similar to Strategy 2, but partitions the
available data and code spaces to use all the available code
states. To introduce Embodiment A, the solution will be
presented first for even N and then for odd N. For N even:

US 10,114,984 B2

Number of Number of
Data data states Encoded Reversed code states
(0D)) ° Yov-2) 2072 Oy ° Yovy ° Ly Loy ° w2y © Oy 2970
s ~-3) o S o o WN-2)
(001)¢s) * Xq1y 2 20" O “Yovay Xy Loy " Wovesy 2
Yov-4) Ly ° 1% Oy ° %y
(0. .. 0)gypy 287 -2y © Oy X @ Lay S 1Y@y 287D
° Xvi2-2) ° Yo ° 1(1) ° 0(1) ° X Ni2-2)
Yo N2—1 ? o2 N2
1o .. 0)(N/2+1) 2@V2-1) Xova-1) o 0(1) Xv2-1) o 1(1) o 0(1) 22y
° Xviz-1) ° 1(1) ° TXni2-1y ° Xni2-1y
©... 0)(N/2) 2072 Xni2) ° X2y X2y ° X2y 2072
° X2y
For N Odd: -continued
Place the digits at the beginning and their 100 101
Number of Number of 20 Teverse at the eln(li o)
Data data states Encoded Reversed code states Place the remaining digits in the middle 1001011101
Return encoded value 1001011101
(01)¢y 20D Oy ° Yovo) Ty IYaveay 20D
° Yav2) "Ly “ Oy . .
(001)) 233 X1y © Oy X O lgy 202 Example 1—Embodiment A—Decode—Mismatch
° Xy ° Yov-a I n-ay >5 Before the Middle
* Yo 1w rxay 70y 7 X
. . . Original order Reversed
0... 01 o121 S(IN2]+1)
¢ X a2 e f“lN/zJ;zr)y Read encoded value 1001011101 1011101001
o y“NQJ’z) o y“) o1 s @ 30 Compare first and last digits 1001011101 1011101001
@ o TP W o P Continue inward until a 1001011101 1011101001
N2 vzl R2)-2) N2 mismatch is found
(10 ... O)qyzyy 2 Xqwpl-n ° Oy Xqwzg-1 2t .
° Xqwzln “ Y 1o If the mismatch reads . . . 1 ... 1001011101 1001011101
° Vet “ 1 “ 1y * Oy 0..., reverse the number
3 S © R nr211 Note the digits between the 1001011101 1001011101
©...00mm 5[NI2] x Ng =0 % Ng) =1 HIv21 35 mismatch
° Xl Ax2b O(é’(l)J) O%y(lj) Place the digits between the 1011 1011
° o o mismatch at the end
X X,
Yo vz An2h Note the digits before the 0 1001011101 1001011101
Place these digits before the 101011 101011
For General NEN and j€[0 . . . [N/2]): filled digits
J [|‘ J) 40 Place a 1 before the filled digits 1101011 1101011
Fill in with zeros 0001101011 0001101011
Return decoded value 0001101011 0001101011
Number of Number of
Data data states Encoded Reversed code states . s
— — Example 2—FEmbodiment A—FEncode—ILess than 2
(10 . .. O)qaayy 2 Rawzp-n ° Oy Raarepn 1y 207 45
* Xqaz)-1y “Yay " lay "y ° Oy
(0}’(1) 0) 5[NI2] x rx(lNQoJ;,l) x rX(lN/zc)J}yU HIv21 Data payload is constructed 0000010111
o XI [;V/.zj (011;’//21J) O(g\(,/ijv)/zj w O(g\if/fjv)/zj (1) Count leading zeros (5) 0000010111
0 (0)) w -1 _ % d 0 ¥ % d 1 ¥ N _ For 5 leading zeros, note the remaining digits 0000010111
o XI _' . ¥, (/+2)_ Bz o(/}z (_l) o(/r)y (1_) SIV2] _ Place the remaining digits at the beginning 10111
DT N21-1) o Wz s (ANR2]+1) Place the same digits in reverse order 1011111101
2 Ly © Xgy 1y © 1Xgy 2 50
Return encoded value 1011111101

Using this general form, it is straightforward to describe an
encoding mapping f and decoding mapping g in an algo-
rithm. Proof of the desired quality g*f=g*r*f=I is readily
apparent to one having ordinary skill in the art upon inspec-
tion.

Example 1—Embodiment A—FEncode—Between 2° and
29

Data payload is constructed 0001101011
Count leading zeros (3) 0001101011
For 3 leading zero, place 0 and 1 in the 3™ _ 0 | S
position from the end

Drop leading zeros and the first 1 from the data 0001101011
payload
Note the next 3 - 1 = 2 digits 0001101011

Example 2—FEmbodiment A—Decode—No Mismatch

(Palindrome)

Original order Reversed

Read encoded value 1011111101 1011111101
Compare first and last digits 1011111101 1011111101

60 Continue inward until no 1011111101 1011111101
match is found
Note the first half of the 1011111101 1011111101
number
Place these digits at theend — _ _ _ _ 10111 10111
Fill in with zeros 0000010111 0000010111

0000010111 0000010111

65 Return decoded value

US 10,114,984 B2

9

Example 3—Embodiment A—Fncode—More than 2°
Data payload is constructed 1000000011
Count leading zeros (0) 1000000011
For 0 leading zeros, place 0 and 1 in positions __01__ _
flanking the middle
Note the last 4 digits and drop the rest 1000000011
Place the digits at the beginning and their 0011011100
reverse at the end
Return encoded value 0011011100

Example 3—Embodiment A—Decode—Mismatch in the
Middle

Original order Reversed

Read encoded value 0011011100 0011101100
Compare first and last 0011011100 0011011100
digits
Continue inward until a 0011011100 0011101100
mismatch is found
If the mismatch reads 0011011100 0011011100

0 P
reverse the number
Note the digits before the 0011011100 0011011100
mismatch
Place the digits before ~ _ _ oo __ _ _ _ 0011
the mismatch at the end
Place a 1 at the | 0011 1 0011
beginning
Fill in with zeros 1000000011 1000000011
Return decoded value 1000000011 1000000011

Generalizations of Embodiment A

This embodiment suggests a number of other solutions
that may be obtained via simple transformations relative to
the proposed solution, including any combination of the

following:

Any symmetric reordering of the encoded state, i.e., any

composition of the invertible mappings s, where

]5
JEI0. .. [N/2]) and s,(X ;)0 (-7, 0Z) = X,01Y v 2O Z)
Any symmetric bit-flipping operation, i.e., bitwise XOR

between the encoded state and any N-bit palindrome

Swapping the interpretation of data states beginning with
O ...0)qnmpand O ... 00)ys), i€, to make the
former map to palindromes and the latter to non-

palindromes, rather than vice versa

Replacing y with ry and/or x with rx in some subset of the
rows of the general solution table, including any subset

of values of j.

It is believed that such transformations may be useful for
mild encryption, i.e., to make the coding specific to a
particular application, device, or user. The above transfor-
mations generate 2@™ related mappings. Trivially, the
encoded state may be reversed for some subset of the
possible data states or at random, but given the context these

should not be considered to produce distinct mappings.

10

15

20

25

35

40

45

50

55

60

65

10

Implementation of Embodiment A

As described above, the foregoing basic algorithm has
been implemented as a pair of Excel® functions in VBA,
together with a small set of more general functions for

handling binary numbers.

Format Function

=BitSymEncA(Data, N) Apply fto encode data
=BitSymDecA(Reading, N)

=BitString(Data, N)

Apply g to decode data

Convert numeric data to a string of “1”s and
“0”s

=BitValue(Data) Convert a string of “1”s and “0”s to numeric
data

=StrRev(Reading, N)

=LSB(Reading, j)

Apply r to reverse a string of “1”s and “0”s
Return the 0-indexed j*-least-significant bit

Embodiment B

Embodiment B hinges on an explicit enumeration of all
N-bit encoded states X, with the property X,2rX,. With

defined by
{—1 +V1+8p
hp=| ————|,
2
note that
I S P <lppy =Ipp+hp+1
and
hp <2%) o ol (o3 0),
Number of Number of
Data data states Encoded Reversed code states

2(N21-1) - ON

PNz 2] hP([N/z D ® - thp)([NQ I
Yanerwzy @V D) Yooz YN21-IN2 D)
P ~ tydawzp ™Paazp

With this formulation, it is noted that the encoded value
is never smaller than its inverse, and palindromes occur
precisely when p is one less than a triangular number, i.e.,
p=t,,+hp. The strategy behind Embodiment B becomes
clearer when grouped by values of hp, as tabulated on the

following tables. Here k is used for hp+1.

US 10,114,984 B2

Solution Embodiment B
Number of Number of
Data data states Encoded Reversed code states
© ... 02 20NREINED 1 (0 L)i, © ... Ognzp 2N21-AN2D g
Yan21- 2]y Yan21- 2]y Yan21- 2]y
NI21-IN2 0. Oquzp O Oqzp N21-IN2
[1...3)awep 2aNRIEINED 2 (0L 0Dy [0. .. Dqwap 2aN21HAN2D . o
Yqni21-|vz2)) Yqni21-|vz2) Yqni21-|vz2)
[0 . .. 2qwrzp (10 . .. O)qwrzp
[teet - - - Weivep 20NREINED e (k - Dawizp [0. .. Kqnzp 20N2I-NRD . g
Yan21- 2]y Yan21- 2]y Yqn21-\N2))
[0 . . Kqwzp vk = D)
(L2, tleQJ)(le/zj) 20821 1 ... Dawep [o... 2)lN/2J)([N/2J) 20821
Yqni21-|vz2)) Yqni21-|n2 [lfwzj Yqni21-|vz2)
0. 22h o) (U Doy
Example 1—Embodiment B—Fncode—FEven N -continued
25 Express hp in binary and place o110 _ _ _ _ _
Data payload is constructed 0110101111 at the beginning
Use entire value for p p=431 Place y in the middle 01100 _ _ _ _
Caleulate h Express p - t;, in binary and 011000100
alatate 1p . 1+ V1+8-431 28 fill in in reverse
P = 2 - Return encoded value 011000100
30
Calculate p - t,,, 28 %29 .
Pty =43l - —— =25 BExample 2—Embodiment B—Decode—Odd N
Express hp in binary and place 11100 _
at the begmmngl . 35 Original order Reversed
Express p - t, in binary and 1110010011
fill, Read encoded value 011000100 001000110
11 TEVerse Compare to reverse 001000110 011000100
Return encoded value 1110010011 Select the larger s = 011000100 s = 011000100
Note the first 4 digits 011000100 011000100
40 Use these digits as hp hp=6 hp=6
Example 1—Embodiment B—Decode—FEven N Note the middle digit 011000100 011000100
Use this digit as y y=0 y=0
Note the last 4 digits 011000100 011000100
. Reverse these digits and 2 2
Original order Reversed evaluate
Calculate t te =21 te =21
Read encoded value 1110010011 1100100111 45 e s _ s _
Compare to reverse 1100100111 1110010011 ?fdgleyséonxli;il:ssm 0+22+21)=46 0+202+21) =46
Select the larger s = 1110010011 s = 1110010011
Note the first 5 digits 1110010011 1110010011 Return decoded value 000101110 000101110
Use these digits as hp hp =28 hp =28
Note the last 5 digits 1110010011 1110010011 . .
Reverse these digits and evaluate 25 25 50 Example 3—Embodiment B—Encode—Palindrome
Calculate t;,, trg =406 thg = 406
Add these two values 25 + 406 = 431 25 + 406 =431
Return decoded value 0110101111 0110101111 Data payload is constructed 0101111001
Use entire value for p p =377
Example 2—Embodiment B—Encode—Odd N 55 Calculate hp L evVITE T
hp=|——— | =26
2
Data payload is constructed 000101110
Use LSB for y 000101110 — y = 0 Calculate p - t;,, a7y B2
Use remaining bits for p 000101110 — p = 23 Pt = 2 T
60
Calculate hp _1+V1+3.23 Express hp in binary and place 11010 _ _ _ _ _
hp=| ——— | = at the beginning
2 Express p - t;, in binary and 1101001011
6l
Caleulate p - t, 647 in in reverse
Pty =23- =2 65 Return encoded value 1101001011

US 10,114,984 B2

13

Example 3—Embodiment B—Decode—Palindrome

Original order Reversed
Read encoded value 1101001011 1101001011
Compare to reverse 0011101100 0011101100
Select the larger s = 1101001011 s = 1110010011
Note the first 5 digits 1101001011 1110010011
Use these digits as hp hp =26 hp =26
Note the last 5 digits 1101001011 1101001011
Reverse these digits and evaluate 26 26
Calculate t;,, the = 351 the = 351
Add these two values 26 + 351 = 377 26 + 351 =377
Return decoded values 0101111001 0101111001

Generalizations of Embodiment B

While symmetric reorderings and symmetric bitwise-
XOR transforms can generate a family of solutions from
Embodiment B, any permutation transform will allow com-
putation of the full generality of possible mappings. If

LNy z([’ﬂz/*l)') N [0

is a permutation of states (any invertible z qualifies), then
transforming the payload data by z will generate another
valid mapping from Embodiment A or B. For every valid
mapping f there is a permutation that converts Embodiment
A to f and another that converts Embodiment B to f.
Permutations may be generated from a deterministic func-
tion, a random bitstream, or a key file by known methods.
For N bits there are

(2 +2<{—”2—w—1>),
permutations, any one of which may be characterized by
1og2(2‘N*” + z(['hz”’l)) !

bits. By Stirling’s approximation, this file size is O(N2™).
For 20 bits this is a file of just over 1 MB. For larger bit
strings, a deterministic function may be more appropriate.

10

15

20

25

30

35

40

45

14
Symmetric reorderings, symmetric bitwise-XOR trans-
forms, and combinations thereof constitute some examples
of deterministic functions that may be used to generate
permutation transforms.

Implementation of Embodiment B

As in Embodiment A, Embodiment B can be implemented
via Excel® formulas as generally follows:

Constants: f=FLOOR(N/2,1)

¢ = CEILING(N/2, 1)

odd =MOD(N,2)=1

p = FLOOR(data/IF(odd, 2,1), 1)

y = “"&IF(odd, MOD(data, 2),)

hp = FLOOR((SQRT(1+8*p) -1)/2,1)
encoded = BitValue(BitString(hp,
f)&y&StrRev(BitString(p—(hp+1)*hp/2, £)))

s = BitString(MAX(reading,

BitValue(StrRev(BitString(reading, N)))), N)
y = IF(odd, VALUE(MID(s, ¢, 1)), 0)

hp = BitValue(LEFT(s, f))

p = BitValue(LEFT(StrRev(s), f) + hp*(hp+1)/2
decoded =y + p*IF(odd, 2,1)

To encode:

To decode:

As described above, the foregoing basic algorithm has
been implemented as a pair of Excel® functions in VBA,
together with a small set of more general functions for
handling binary numbers.

Format Function

=BitSymEncB(Data, N)
=BitSymDecB(Reading, N)
=BitString(Data, N)

Apply fto encode data

Apply g to decode data

Convert numeric data to a string of “1”s and
“0”s

Convert a string of “1”s and “0”s to numeric
data

Apply r to reverse a string of “1”s and “0”s

=BitValue(Data)

=StrRev(Reading, N)

Table 1 below includes a listing of Visual Basic functions
used in various embodiments of algorithms and software
code arranged to perform the present methods. It should be
appreciated the functions below include the operators rel-
evant to the various disclosed embodiments; however, other
operators conventionally associated with these functions
may also be used.

TABLE 1

FUNCTION (operators)

Description

CEILING (number)

CINT (expression)
FLOOR (number)

INT (number)

LEFT (text, [number__of characters])

LEN (text)

LOG (number, [base])

MAX (numberl, [number2, . .

returns the smallest integer greater than
or equal to number

converts expression to an integer value
returns the largest integer less than or
equal to number

returns integer portion of a number; for
negative number, returns first negative
integer less than or equal to number
extracts a sub string from text starting
from the left most character of a length
number__of__characters

returns length of text

returns logarithm of number to a
specified base (if base omitted, base is
10)

returns the largest value from the
numbers provided, i.e., numberl, . . .
number__n

. number_n])

15

US 10,114,984 B2
16

TABLE 1-continued

FUNCTION (operators)

Description

MID (text, start_ position, number_ of _characters)

MIN (numberl, [number2, . . . number_n])

MOD (number, divisor) or number MOD divisor

RIGHT (text, [number_ of characters])

SQR (number)
stringl & string2

extracts a substring from text beginning
at start_position (left most position is 1)
of a length number of characters

returns the smallest value from the
numbers provided, i.e., numberl, . . .
number_n

returns remainder after number is divided
by divisor

extracts a sub string from text starting
from the right most character of a length
number of characters

returns square root of number
concatenate stringl with string2

The following section include a full Visual Basic listing of
embodiments of algorithms and software code that are
arranged to perform steps as described in the accompanying

Dim i As Integer

Function BitValue(S As String) As Double

flowcharts. Functions LSB, StrRev, BitString, BitValue, 20

BitSymEnc (embodiments A and B), and BitSymDec (em-

bodiments A and B) are included below.

BitValue = 0
Fori =1 To Len(S)
Select Case Mid(S, i, 1)

LSB (Least Significant Bit—Returns the 0-Indexed j” Ca];e,t\?l 5 % Birval
Least Significant Bit) Function: frane = fHvate
25 Case "1"
BitValue = 2 * BitValue + 1
Function LSB(reading, j As Integer) As Integer Casef Else
Dim R As Double: R = CDbl(reading) BltYalue = CVEn(xIErrValue)
If (R <0) Or (j <0) Then Exit For
LSB = CVErr(xlErrValue) 30 End Select
Else . Next i
= 1 1) — * T 1
LSB=Fix(R/2 j)-2*FixR/2A(+1) End Function
End If
End Function
35 BitSymEncA (Encodes Data for N-Bit Printed Memory—

StrRev (String Reverse—Returns the String in Reverse

Format) Function:

Function StrRev(S As String) As String

Embodiment A) Function:

Function BitSymEncA(value, N As Integer) As Double
Dim Q As Double: Q = CDbl(value)

Dim i As }Pteger 40 Dim floor As Integer: floor = Int(N / 2)
SHKeV = Dim ceil As Integer: ceil = ~Int(-N / 2)
For i =1 To Len(S) If (N < 1) Or (N > 49) Then
StrRev = Mid(S, i, 1) & StrRev BitSymEncA = CVErr(xIErrValue)
Nexti Elself (Q <0) Or (Q >=2 (ceil - 1) * (2 floor + 1)) Then
End Function BitSymEncA = CVErr(xIErrValue)
45 End If
. Dim S As String: S = BitString(Q, N)
BitString (Bit Number to String—Converts Numeric Data Dim x As String
to a String of “1”s and “0”’s) Function: Dim y As String
Dim d As Double
If Q = 0 Then
Function BitString(reading, N As Integer) As String 50 El::= 0
Dim R As Double
R = CDbl(reading) En‘; TfLog(Q) / Log(2)
' Excel cell value resolution allows for 15 decimal digits Select Case d
' This is equivalent to 49 binary digits Case Is >= N - 1
' N should therefore be 1 to 49 a)s(e_ ?\/IiE(S 2 + floor, floor - 1)
"and R should be 0 to 2 N - 1 55 y = "0" & Right(S, ceil — floor) & "1"
If (N <1)Or (N > 49) Then Case Is < ceil
BitString = CVErr(x|ErrValue) X = Mid(S, floor + 1, floor)
Elself (R <0) Or (R >=2 N) Then y- R_ight(,S coil — ffoor)
BitString = CVErr(x|ErrValue) Case Flso ?
glllt(;tlrl;n o Dim i As Integer: i = Int(d — ceil + 1)
Din A% Inteser 60 x = Mid(S, floor - i + 2, floor - i - 1)
. g y = "0" & Right(S, 2 * i + ceil - floor) & "1"
ForJ y 0 To (N - 1) . - End Select
Ne]j’(fjsmng = LSBR, j) & BitString BitSymEncA — BitValue(X & y & StRev(X)
End Function End Function
65

BitValue (String to Number—Converts a String of “1”’s

and “0”s to Numeric Data) Function:

BitSymDecA (Decodes Data for N-Bit Printed Memory—
Embodiment A) Function:

US 10,114,984 B2

17

Function BitSymDecA (reading, N As Integer) As Double
' Excel cell value resolution allows for 15 decimal digits
' This is equivalent to 49 binary digits
' N should therefore be 1 to 49
"and R should be 0 to 2N - 1
Dim R As Double: R = CDbl(reading)

If (N <1)Or (N > 49) Then
BitSymDecA = CVErr(xlErrValue)
ElseIf (R < 0) Or (R >=2 " N) Then
BitSymDecA = CVErr(xlErrValue)
End If
BitSymDecA = 0
Dim j As Integer
Dim isPalindrome As Boolean: isPalindrome = True
Dim floor As Integer: floor = Int(N / 2)
Dim ceil As Integer: ceil = -Int(-N / 2)
Forj=0Toceil - 1
If (LSB(R, N -1-j)=LSB(R, J)) Then
BitSymDecA = 2 * BitSymDecA + LSB(R, j)
Else
isPalindrome - False
Exit For
End If
Next j
Dim k As Integer
Dim i As Integer: i = 1 + (2 * floor - 2 - j) Mod (floor)
Dim kMax As Integer
If isPalindrome Then

kMax = floor
Else

kMax=N-j-2
End If

If LSB(R, j) = 1 Then
For k =j + 1 To kMax
BitSymDecA = 2 * BitSymDecA + LSB(R, N -k - 1)
Next k
Else
For k =j + 1 To kMax
BitSymDecA = 2 * BitSymDecA + LSB(R, k)
Next k
End If
If Not isPalindrome Then
BitSymDecA = BitSymDecA + 2) (i+ceil-1)
End If
End Function

BitSymEncB (Encodes Data for N-Bit Printed Memory—
Embodiment B) Function:

Function BitSymEncB(value, N As Integer) As Double
Dim odd As Integer: odd = N Mod 2
Dim Q As Double: Q = CDbl(value)
If (N <1)Or (N >49) Then
BitSymEncB = CVErr(x|ErrValue)
Elself (Q < 0) Or (Q >= 2 (ceil - 1) * (2~ floor + 1)) Then
BitSymEncB = CVErr(x|ErrValue)
End If
Dim S As String: S = BitString(Q, N)
Dim p As Double: p = (Q - odd * CInt(Right(S, 1))) / (1 + odd)
Dim hp As Double: hp = Int((Sqr(1 + 8 *p) - 1) / 2)
Dim f As Integer: = Int(N /2)
BitSymEncB = BitValue(BitString(hp, f) & Right(S, odd) &
StrRev(BitString(p —
(hp + 1) * hp / 2, 1))
End Function

BitSymDecB (Decodes Data for N-Bit Printed Memory—
Embodiment B) Function:

Function BitSymDecB(reading, N As Integer) As Double
Dim odd As Integer: odd = N Mod 2
Dim R As Double: R = CDbl(reading)
If (N <1)Or (N > 49) Then
BitSymDecB = CVErr(xlErrValue)

10

15

20

25

30

35

45

50

55

60

65

18

-continued

ElseIf (R < 0) Or (R >= 2 N) Then
BitSymDecB = CVErr(xlErrValue)
End If
Dim S As String: S = BitString(R, N)
Dim f As Integer: f = Int(N / 2)
Dim a As Double: a = BitValue(Left(S, 1))
Dim b As Double: b = BitValue(StrRev(Right(S, f)))
Dim hp As Double
If a > b Then
hp=a
Else
hp=>b
End If
'p-thp=Min(a, b)=a+b-hp
"thp=hp*thp+1)/2
"t hp—hp=nhp *hp-1)/2
BitSymDecB =(a+b+hp * (hp - 1)/ 2) * (1 + odd) +
odd * CInt(Mid(S, -Int(-N
/2), 1)
End Function

Alternate Embodiments

An alternate embodiment, hereinafter referred to as Strat-
egy 1, is depicted in FIG. 2 where printed memory label 40
is made asymmetrical, i.e., the leads in the upper portion of
label 40 are arranged differently than the leads in the lower
portion of label 40. Thus, the contacts in the upper left corner
may be used to determine the orientation of label 40 in a
reader. Such an arrangement requires the use of switchable
contacts to reconfigure the reader according to the orienta-
tion of the label. Strategy 1 causes increased cost for the use
of printed memory labels, especially for the reader device.

Another alternate embodiment, hereinafter referred to as
Strategy 2, is a simple software approach. A symmetrically
oriented pair of bits is chosen and then 0 and 1 are written
to those bits, respectively. This embodiment uses two bits of
memory to establish what is essentially one bit of informa-
tion, i.e., O represents a first orientation and 1 represents a
second bit of orientation. For example, the printed memory
could include bit 0=0 and bit 19=1, or any symmetrically
oriented pair. Thus, the reader could detect the orientation of
the symmetrical pair of bits and determine orientation of the
label accordingly.

Generally, the presently disclosed algorithms and meth-
ods provide a coding scheme for capturing just over N-1 bits
of information in an N-bit memory cell, such that reversing
the bit order of the N-bits preserves the N-1 bits payload
data. Moreover, the present methods can be directly
extended to cover the entire set of solutions to the problem
statement via transformations including permutation trans-
formations, symmetric bit-swapping transformations and
symmetric bit-flipping transformations. The disclosed meth-
ods permit payload data to be robust to, i.e., unaffected by,
180° rotation of the PM carrier body. The methods enable a
single reader to register bodies of various configurations.
The methods may be easily modified for a particular appli-
cation, device, or user, while also providing a lower cost
option than building a reader compatible with both orienta-
tions. Moreover, the methods are more efficient than an
approach dedicating two bits to orientation determination.

This technology may be used as an optional part of printed
memory solutions, as an alternative to more expensive
readers, reduced bit capacity, or mechanical means of
enforcing orientation. For example, one use may be as a key
enabler to use a single reader for a wallet card before and
after it has been punched out of its display card. Moreover,
although the encoding and decoding actions are in some
embodiments described as actions performed by separate
devices, e.g., a printed memory reader or a printed memory

US 10,114,984 B2

19

writer, it is within the scope of the present disclosure to
perform both encoding and decoding actions within a com-
mon device or unit.

It will be appreciated that various of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications. Various presently unforeseen or unanticipated
alternatives, modifications, variations or improvements
therein may be subsequently made by those skilled in the art
which are also intended to be encompassed by the following
claims.

What is claimed is:

1. A printed memory reader adapted to determine an
original value from a printed memory device comprising a
plurality of contact pads and an encoded value created by
encoding the original value, the encoded value comprises N
bits of data, where N is equal to a number of bits of data
stored in the printed memory device, the printed memory
reader comprising:

a plurality of probes arranged to contact the plurality of

contact pads;

a memory storage element comprising instructions pro-
grammed to execute the steps:

a) reading the encoded value or an inverse encoded
value from the printed memory device using the
plurality of probes to obtain a read value, wherein
equivalency between the encoded value and the
inverse encoded value is not required; and,

b) decoding the read value to obtain a decoded value
equal to the original value; and,

a processor arranged to execute the instructions.

2. The printed memory reader of claim 1 wherein decod-
ing the read value comprises determining when the read
value is a palindrome value.

3. The printed memory reader of claim 1 wherein when
the read value is not a palindrome value, decoding the read
value comprises determining when the read value is the
encoded value or the inverse encoded value.

4. The printed memory reader of claim 3 wherein decod-
ing the read value comprises:

determining when the read value is larger than an inverse
of the read value; or,

determining when the read value is smaller than the
inverse of the read value.

5. The printed memory reader of claim 3 wherein deter-
mining when the read value is the encoded value or the
inverse encoded value comprises:

a) comparing symmetrically oriented bit pairs beginning
with an outermost pair and moving inwardly until bits
of a compared symmetrically oriented bit pair are
non-identical bits; and,

b) using the non-identical bits to determine when the read
value is the encoded value or the inverse encoded
value.

6. The printed memory reader of claim 1 wherein when N
is an even number, decoding the read value is performed
according to:

a) determining the larger of the read value and an inverse

of the read value to establish the encoded value;

b) determining a triangular number indexed by a first half
of the encoded value;

¢) reversing a second half of the encoded value to form a
reversed second half value; and,

d) adding the triangular number to the reversed second
half value to obtain the decoded value,

and when N is an odd number, decoding the read value is
performed according to:

20

25

30

35

40

45

50

60

65

20

a) determining the larger of the read value and an inverse
of the read value to establish the encoded value;

b) determining a center bit of the encoded value;

¢) removing the center bit from the encoded value result-
ing in a diminished value having N-1 bits;

d) determining a triangular number indexed by a first half
of the diminished value;

e) reversing a second half of the diminished value to form
a reversed second half value; and,

f) adding the center bit to two times a sum of the triangular
number and the reversed second half value to obtain the
decoded value.

7. The printed memory reader of claim 1 wherein the
printed memory reader is configured to read the encoded
value or the inverse encoded value that is a palindrome and
configured to read the encoded value or the inverse encoded
value that is not a palindrome.

8. A printed memory writer adapted to store an encoded
value on a printed memory device comprising a plurality of
contact pads, the printed memory writer comprising:

a plurality of probes arranged to contact the plurality of

contact pads;

a memory storage element comprising instructions pro-
grammed to execute the steps:

a) encoding an original value to form the encoded value
comprising N bits of data, where N is equal to a
number of bits of data stored in the printed memory
device, such that an alternate value cannot yield an
alternate encoded value equal to the encoded value
or an inverse encoded value, wherein equivalency
between the encoded value and the inverse encoded
value is not required; and,

b) storing the encoded value on the printed memory
device; and,

a processor arranged to execute the instructions.

9. The printed memory writer of claim 8 wherein when N
is an even number, the encoded value is calculated according
to:

a) determining a largest triangular number that is less than
or equal to the original value, the triangular number
comprising an index;

b) calculating a difference between the original value and
the largest triangular number;

¢) reversing the difference to form an inverse difference;
and,

d) combining, in order, the index and the inverse differ-
ence to form the encoded value,

and when N is an odd number, the encoded value is
calculated according to:

a) determining a least significant bit of the original value;

b) removing the least significant bit from the original
value resulting in a truncated value having N-1 bits;

¢) determining a largest triangular number that is less than
or equal to the truncated value, the triangular number
comprising an index;

d) calculating a difference between the truncated value
and the largest triangular number;

e) reversing the difference to form an inverse difference;
and,

f) combining, in order, the index, the least significant bit
and the inverse difference to form the encoded value.

10. The printed memory writer of claim 8 wherein the
printed memory writer is configured to store the encoded
value that is a palindrome and configured to store the
encoded value that is not a palindrome.

11. A method of using a printed memory device for
storage of an original value comprising:

US 10,114,984 B2

21

a) encoding the original value to form an encoded value
comprising N bits of data, where N is equal to a number
of bits of data stored in the printed memory device,
such that an alternate value cannot yield an alternate
encoded value equal to the encoded value or an inverse
encoded value, wherein equivalency between the
encoded value and the inverse encoded value is not
required; and,

b) storing the encoded value on the printed memory
device.

12. The method of using a printed memory device of
claim 11 wherein when N is an even number, encoding the
original value is performed according to:

a) determining a largest triangular number that is less than
or equal to the original value, the triangular number
comprising an index;

b) calculating a difference between the original value and
the largest triangular number;

¢) reversing the difference to form an inverse difference;
and,

d) combining, in order, the index and the inverse differ-
ence to form the encoded value,

and when N is an odd number, encoding the original value
is performed according to:

a) determining a least significant bit of the original value;

b) removing the least significant bit from the original
value resulting in a truncated value having N-1 bits;

¢) determining a largest triangular number that is less than
or equal to the truncated value, the triangular number
comprising an index;

d) calculating a difference between the truncated value
and the largest triangular number;

e) reversing the difference to form an inverse difference;
and,

f) combining, in order, the index, the least significant bit
and the inverse difference to form the encoded value.

13. The method of using a printed memory device of
claim 11 wherein the step of encoding is configured to
permit the encoded value to be a non-palindrome value.

14. A method of using a printed memory device for
retrieval of an original value, wherein the original value is
encoded to form an encoded value comprising N bits of data,
where N is equal to a number of bits of data stored in the
printed memory device, the method comprising:

a) reading the encoded value or an inverse encoded value
using a printed memory reader to obtain a read value,
wherein equivalency between the encoded value and
the inverse encoded value is not required; and,

b) decoding the read value to obtain the original value.

15. The method of using a printed memory device of
claim 14 wherein the step of decoding the read value
comprises determining when the read value is a palindrome
value.

5

20

25

30

40

45

50

22

16. The method of using a printed memory device of
claim 14 wherein when the read value is not a palindrome
value, the step of decoding the read value comprises deter-
mining when the read value is the encoded value or the
inverse encoded value.

17. The method of using a printed memory device of
claim 16 wherein decoding the read value comprises:

determining when the read value is larger than an inverse
of the read value; or,

determining when the read value is smaller than the
inverse of the read value.

18. The method of using a printed memory device of
claim 16 wherein determining when the read value is the
encoded value or the inverse encoded value comprises:

a) comparing symmetrically oriented bit pairs beginning
with an outermost pair and moving inwardly until bits
of a compared symmetrically oriented bit pair are
non-identical bits; and,

b) using the non-identical bits to determine when the read
value is the encoded value or the inverse encoded
value.

19. The method of using a printed memory device of
claim 14 wherein when N is an even number, decoding the
read value is performed according to:

a) determining the larger of the read value and an inverse

of the read value to establish the encoded value;

b) determining a triangular number indexed by a first half
of the encoded value;

¢) reversing a second half of the encoded value to form a
reversed second half value; and,

d) adding the triangular number to the reversed second
half value to obtain the decoded value,

and when N is an odd number, decoding the read value is
performed according to:

a) determining the larger of the read value and an inverse
of the read value to establish the encoded value;

b) determining a center bit of the encoded value;

¢) removing the center bit from the encoded value result-
ing in a diminished value having N-1 bits;

d) determining a triangular number indexed by a first half
of the diminished value;

e) reversing a second half of the diminished value to form
a reversed second half value; and,

f) adding the center bit to two times a sum of the triangular
number and the reversed second half value to obtain the
decoded value.

20. The method of using a printed memory device of

claim 14 wherein the step of reading is configured to permit
the encoded value to be a non-palindrome value.

#* #* #* #* #*

