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Storing computer readable
instructions in memory
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Executing computer
readable instructions fo Zﬁ?ﬁéﬁ;ﬁd by
a covariancs data
I Obtain a plurality of asset retum data for each asset in a piurality of assets in a portiolio or implied market
& covariance data
| Populate an initial estimated portfolio covariance matrix Use the
estimated
‘L portfolio
Compute an initial respective oplimal portfolio weight for each asset in the plurality of covariance
assels matrix and a
é scaling factor
using a
Obtain a respective amount of each asset gstimated
$ conditioning
number k of the
Populate an updatable malrix decomposition using the estimated portfolio covariance estimated square
matrix root B of the
é’ covariance
matrix
Obtain at least one first update to the plurality of asset retumn data for each assetin the
plurality of assets Matrix B,
J, vacior w,
Update the updateable matrix decomposition to include the at least one first update for matrix B,
pach asset in the updateable matrix decomposition Vector v.
¥
Modify the respective oplimal portfolic weights using the updated malrix decomposiion Matrix U,
using an estimated condition number « of an estimated square root B of the covariance matrix R,
matrix and matrix V.

v

Modify the asseats in the portfolio 5o that the assets from respeciive porfions of the
portfolio are substantially equal fo the modified respective weights for each asset by
purchasing an additional quantity of at least one asset included in the porifolio, or
selling a portion of at least one asset included in the porifolio

y

Transmit a requast fo a second computer operated by or under the confrol of 3
broker/dealer fo purchase the additional quantity of the at least one asset or seli the

portion of the at least one asset.

Obtain a second update fo the plurality of asset return data for each asset in the

plurality of assets

Lipdate the updateable matrix decomposition by replacing the at least one first update
with the second update, modifying the respective portfolic weights, and modifying
respective amounis of the assets in the portfolio.

Fig. 2




US 10,445,834 B1

1
METHOD AND SYSTEM FOR ADAPTIVE
CONSTRUCTION OF OPTIMAL PORTFOLIO
WITH LEVERAGE CONSTRAINT AND
OPTIONAL GUARANTEES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit under 35 U.S.C. §
119€ of U.S. Provisional Application No. 61/928,805, filed
Jan. 17, 2014, which application is incorporated herein by
reference in its entirety.

TECHNICAL FIELD

The present disclosure relates to investment portfolio
construction, and more specifically to efficient adaptive
construction of a leverage-constrained approximately opti-
mal investment portfolio as additional financial data become
available over time.

REFERENCE TO COMPUTER PROGRAM
LISTING APPENDIX

The present application includes a computer program
listing appendix. The appendix contains an ASCII text
function of the computer program listing or sample file input
data as follows:

copoglb 5 KB Created Dec. 10, 2013
gop2b 4 KB Created Dec. 10, 2013
LS5a 20 KB Created Jun. 2, 1999

svd3a 2 KB Created Jan. 13, 2005
worldvalb 6 KB Created Dec. 10, 2013

BACKGROUND

Investors (e.g. individuals, institutions, pension plans,
mutual fund managers, and insurance companies) want to
achieve high investment returns. However, many investors
have failed to achieve this goal. From the collapse of
Long-Term Capital Management in 1998, through the world
financial crisis triggered by subprime lending, through cur-
rent state pension funding crises, long-term performance has
been elusive. See for example: http://www.nytimes.com/
2013/03/12/business/sec-accuses-illinois-of-securities-
fraud.html?_r=0&pagewanted=print

Over the last half-century or so, a number of mathematical
approaches to portfolio construction have been developed
and become well-known. The concept of a risk vs. return
trade-oft (exemplified in Harry Markowitz’s Modem Port-
folio Theory as the concept of “efficient frontier”) is perhaps
the best example. The concept of a risk vs. return tradeoft is
s0 pervasive in modem investment thinking that it has been
adopted in investment law: see, for example, page 1 of the
Uniform Prudent Investor Act at: http://www.uniformlaw-
s.org/shared/docs/prudent%20investor/upia_final_94.pdf
where it is stated “The tradeoft in all investing between risk
and return is identified as the fiduciary’s central consider-
ation”.

Given a specific set of mathematical assumptions includ-
ing assumed parameter values, there is a unique portfolio
that on an expected-value basis outperforms every other
portfolio in the long run, and is not systematically outper-
formed by other portfolios, even in the short run. This
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2

portfolio goes by many names in the literature, as described
below, but hereinafter is referred to as “the optimal portfo-
lio.” The assumed parameters include asset correlations and
interest rates. In many applications, the assumed parameters
are estimated from historical data or from market-implied
values.

Implied values are parameter values that are inferred from
available financial data rather than estimated from historical
data. A good example is implied volatility, in which the
volatility to use in the Black-Scholes option-pricing equa-
tion is “backed out” from observed option prices. Another
good example is the implied correlation of forward interest
rates, which can be backed out from observed swaption
(option on an interest rate swap) prices. See: Options,
Futures, and Other Derivative Securities by John Hull,
Prentice Hall, © 1989, in which Section 5.9 deals with
implied volatilities, and Volatility and Correlation in the
Pricing of Equity, FX, and Interest-Rate Options by Ric-
cardo Rebonato, Wiley, © 1999, in which Chapters 10 and
11 deal with implied volatilities and correlations in interest
rate models.

The optimal portfolio satisfies the Kelly criterion (first
published in 1956 as an analysis of optimal wagers in a
favorable gambling game). See: A new interpretation of
information rate, J. R. Kelly, Bell Syst. Techn. J. 35,
917-926, available at: http://www.bjmath.com/bjmath/kelly/
kelly.pdf

The ideas are presented in a more traditional investment
context in, for example, Chapters 9 and 15 of Investment
Science (David Luenberger, Oxford University Press, (c)
1998).

The optimal portfolio is also described in: 4 Benchmark
Approach to Investing and Pricing, by Eckhard Platen,
available at: http://www.business.uts.edu.au/qfrc/research/
research_papers/rp253.pdf

Key points regarding the optimal portfolio include:

1. The optimal portfolio is also known as the Growth-
Optimal Portfolio, GOP, the Kelly portfolio, the log-optimal
portfolio, or the numeraire portfolio.

2. In Platen’s formulation, the optimal portfolio is strictly
non-negative (no asset is shorted) and is constructed from
the zeroth (risk-free) and risky assets numbered 1 to n. The
non-negative proviso is not part of the standard definition of
the optimal portfolio given by other researchers on the topic:
we refer to this as the Platen restriction.

3. All nonnegative (long-only) portfolios denominated in
terms of the Platen-restricted optimal portfolio (giving a
“benchmarked value” of the portfolio) are supermartingales.
“Supermartingale” is a term from probability theory mean-
ing that on an expected value basis the benchmarked value
of the portfolio (i.e. its value divided by the value of the
optimal portfolio) stays the same or declines.

4. The optimal portfolio is optimal over specified intervals
of time (i.e. the expected growth rate of all other nonnega-
tive portfolios is no greater).

5. The optimal portfolio also has the highest long-term
growth rate, i.e. the limiting behavior of the portfolio
described in the point (4) above is as expected.

6. The optimal portfolio cannot be systematically outper-
formed (given a technical definition of “systematically out-
performed”).

7. The market portfolio may differ from the optimal
portfolio. This is a big departure from the usual thinking
about the risk vs. return tradeoff, where any deviation from
the market portfolio is taken as a “tilt” that increases risk.

8. There is a “real-world” asset price formula using the
value of the optimal portfolio that does not depend on the
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existence of an equivalent risk-neutral probability measure.
This is an important result. For example, option prices
matching those obtained using the Black-Scholes formula
can be obtained using a real-world measure rather than using
the Black-Scholes risk-neutral assumptions. Measures are
described in, for example Firnancial Calculus (Martin Baxter
and Andrew Rennie, Cambridge University Press, © 1996).

9. For claims that do not depend on the risky assets, e.g.
the price of a bond with a fixed coupon rate, there is a pricing
formula based on zero-coupon bond prices. So despite the
fact that the optimal portfolio is risky, simple claims (such
as the value today of $1 due ten years from now) can be
priced as usual.

10. Strong arbitrage (the existence of a portfolio that starts
with zero capital and ends up with positive capital with a
positive probability) is ruled out.

11. There is a Diversification Theorem, as follows: given
enough assets and noise sources in the market, diversified
portfolios approach the optimal portfolio. The formulation
of the preceding theorem is complicated. The Naive Diver-
sification Theorem given in Platen and Rendek’s paper (see
next paragraph) is easier to understand.

The Naive Diversification Theorem is given in Platen and
Rendek’s paper (Approximating the Numeraire Portfolio by
Naive Diversification, Eckhard Platen and Renata Rendek,
Research Paper 281 of the Quantitative Finance Research
Centre at the University of Technology, Sydney, Australia).
See: http://www.business.uts.edu.au/qfrc/research/
research_papers/rp281.pdf

Hakansson and Ziemba, in section 3.1 of Capital Growth
Theory (Nils H. Hakansson and William T. Ziemba, Chapter
3 in Handbooks in OR & MS, Vol. 9, © 1995 Elsevier
Science B.V., available at http://www.hakansson.com/nils/
papers/capital 95.pdf) develop an additional key property of
the optimal portfolio investment strategy: the strategy is
“myopic”. By this the authors mean that only current-period
returns and covariances are needed in order to achieve
optimal behavior in the long run. This is to be distinguished
from the dynamic programming approach commonly used to
price options, for example, which would typically involve
recursive, backwards-in-time solution of the portfolio com-
position and value given desired final conditions.

Luenberger (cited above) gives an explicit version of the
two-fund theorem in the multi-period context. The theorem
states that any efficient portfolio can be constructed from a
mixture of the minimum variance portfolio and the optimal
portfolio. In the case where there is a risk-free asset,
Luenberger shows (equation 15.6) how to find the compo-
sition of the optimal portfolio if both long and short assets
are permitted (i.e. ignoring the Platen restriction). Luen-
berger only deals with the case in which the asset return
covariance matrix has full rank and is therefore invertible.

The optimal portfolio is also treated in A Benchmark
Approach to Quantitative Finance (Eckhard Platen, David
Heath, Springer, (c) 2006). Note that the authors’ definition
of the optimal portfolio as being necessarily nonnegative
(referred to above as the Platen restriction) does not allow
shorting of any asset and therefore differs from Luenberg-
er’s. The rationale for imposing the Platen restriction is that,
in a jump diffusion model, any asset’s value can jump to zero
instantaneously (even if this happens very rarely), and if a
short position were permitted the portfolio value could
thereby become negative. Jump-diffusion models allow for
market crashes and are therefore thought to be more realistic
than those employing only geometric Brownian motion

A “leverage-constrained” optimal portfolio is a general-
ized definition encompassing both the Luenberger and
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Platen definitions of the optimal portfolio. A “leverage-
constrained” optimal portfolio is one in which the amount of
assets that can be shorted is greater than or equal to zero and
less than or equal to the amount in the Luenberger solution.
For example, this definition is applicable to the case in
which an investor cannot borrow at the risk-free rate but
must pay a spread over that rate because of institutional
constraints or credit ratings.

As noted in above, the optimal portfolio has convenient
numeraire properties for asset valuation. The word “numer-
aire” may require some explanation: it is defined in Finan-
cial Calculus (op. cit.) as “A basic security relative to which
the value of other securities can be judged. Often the cash
bond.” Here the numeraire is not the cash bond (or bank
account), but a mixture of the risk-free and risky assets,
possibly with a non-negativity constraint imposed.

It is well-known that stock options can be valued (using
the Black-Scholes formula) as the expected discounted value
of the option payoff under the so-called risk-neutral prob-
ability measure. Under this measure the stock index is
assumed to grow at the risk-free rate (often taken to be the
yield on United States (U.S.) government bonds or U.S.
dollar denominated interest rate swaps—what Baxter and
Rennie refer to as the “cash bond”) less the dividend rate.
The risk-neutral measure is very explicitly not the real-world
measure, although the two measures are linked by the
Cameron-Martin-Girsanov transformation and the Radon-
Nikodym derivative. See for example: http://www.chiark-
.greenend.org.uk/~alanb/stoc-calc.pdf

Intuitively, the Radon-Nikodym derivative is the ratio of
the risk-neutral probability density for the stock price to the
real-world probability density for the stock price. In contrast
it is possible to price options using the real-world measure
if the optimal portfolio is used as numeraire (hence the term
numeraire portfolio). This is a convenient alternative to
risk-neutral pricing. Black-Scholes option prices can be
reproduced using the real-world measure as shown below.

Given the existence of the optimal portfolio, the current
benchmarked values of all assets are greater than or equal to
their future benchmarked wvalues: technically they are
supermartingales as described above. All values are com-
puted under the real-world, not risk-neutral, measure. This
implies that no asset portfolio systematically outperforms
the optimal portfolio. If the Platen restriction is in effect,
then the correct statement is “no nonnegative asset portfolio
systematically outperforms the optimal portfolio™.

If the Platen restriction is in effect, it can be shown (under
suitable assumptions) that an equally-weighted world stock
portfolio approaches a real-world proxy for the optimal
portfolio in the limiting case. This is described in the Platen
& Heath text cited above and in the Platen & Le paper
Approximating the Growth Optimal Portfolio with a Diver-
sified World Stock Index ((c) 2006), available at: http://
www.business.uts.edu.au/qfrc/research/research_papers/
rp184.pdf

Describing a portfolio in the limiting case and with known
covariances and returns is of course an idealization. Real-
world volatilities and returns change over time, and the
limiting case of an infinite number of assets is never actually
reached. This indicates that estimation and smoothing of
returns and covariances, and efficient processing in the case
of large numbers of assets, will be significant in any real-life
application.

Another important point is that in the real world many
investors are taxable (pension funds being a notable excep-
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tion). Practical portfolio optimality may therefore, in addi-
tion to mathematical theory, require consideration of prac-
tical tax issues.

Some U.S. Tax Code considerations for international
investment are outlined below.

A focus on international equity investment through a
U.S.-domiciled mutual fund is appropriate for many U.S.
investors. Although many investors concentrate their efforts
on trying to identify and buy undervalued investments with
the hope of selling them at a higher price, dividends can also
contribute substantially to investment returns.

Not all dividends are taxed equally, however. The U.S.
Tax Code distinguishes between qualified and non-qualified
dividends. Typically, nonqualified dividends will be taxed at
the taxpayer’s marginal rate, which could be as high as
39.6% ignoring Medicare tax, whereas qualified dividends
are taxed at 20%.

Dividends from publicly-traded U.S. corporations are
usually qualified dividends. Dividends from publicly-traded
corporations engaged in an active trade or business domi-
ciled in countries with which the U.S. has a tax treaty are
also usually qualified dividends.

U.S.-domiciled mutual funds investing in international
assets are subject to more complex considerations. Foreign-
domiciled mutual funds are not considered in this disclosure
since such funds generally have a number of disadvantages
under U.S. tax law, and Americans are generally prevented
from investing in them under U.S. securities law.

The foreign jurisdictions with which the U.S. has tax
treaties generally have withholding tax in place on dividend
income, often at a rate of 15%. There are two main alter-
natives for fund shareholders to get credit for these taxes on
their U.S. tax returns, reducing or even eliminating double
taxation:

1. The foreign tax deduction: the fund shareholder can
choose to deduct foreign taxes paid as an expense. So, for
example, if the shareholder pays tax at a 40% marginal rate,
the incremental tax reduction will be 40% of the foreign tax.

2. The foreign tax credit: the fund shareholder can credit
foreign taxes against U.S. tax payable (within limits). This
is clearly more favorable tax treatment for the fund share-
holder than the foreign tax deduction.

According to the Bogleheads website at: http:/www-
Jbogleheads.org/wiki/Foreign_tax_credit, U.S. taxpayers
cannot claim foreign tax credits for foreign mutual funds
held in IRA’s, 401(k)’s, or variable annuities (VA’s). How-
ever the Allianz High Five variable annuity (VA) prospectus,
available at: https://www.allianzlife.com/content/public/Lit-
erature/Documents/HFV-001.pdf says: “We may benefit
from any foreign tax credits attributable to taxes paid by
certain funds to foreign jurisdictions to the extent permitted
under the federal tax law.”

The implication is clear: a life insurance carrier can
benefit from the foreign tax credit for funds held in a
separate account backing an ordinary VA.

Some of the U.S. tax code considerations noted above, as
applied to a VA, may depend on the details of the separate
account structure. The Bogleheads article says there is no
credit for foreign taxes in a fund-of-funds structure, but that
may not carry over to tax treatment for a carrier holding
assets in separate account.

There are different U.S. tax code considerations for a tax
flow-through annuity (see U.S. Pat. No. 7,716,075). The
product is not tax-deferred, the carrier has legal title to the
fund assets, and the key tax flow-through feature is that the
annuity owner owns the funds for tax purposes (this is how
capital gains treatment for sale of fund shares is achieved,
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for example). It therefore seems very likely that the tax
flow-through annuity owner can claim the foreign tax credit.

If a diversified world fund’s holdings are about 50%
outside the U.S., with dividends being paid at 3% or so (but
possibly much higher if the stocks held are for instance

Australian or Canadian), and 15% withholding applies
(the standard tax treaty rate described above) then there will
be a 0.225% per year pricing advantage for a variable
annuity (VA) with such holdings. Although this may seem
like a small advantage, over a 30-year holding period it
could easily lead to account balances 6-7% higher than
otherwise: for example, (1.052253°)+1.05°°=1.0663.

Although turning qualified dividends into ordinary
income may be undesirable, putting high-dividend foreign
stocks into a VA creates a product suited to a low domestic
yield environment.

If one can select an international (that is, ex-U.S.) stock
portfolio with a dividend yield of 4% or so, then credit for
an assumed 15% withholding tax generates a tax credit of
about 0.60%. This would work well for high-yielding Cana-
dian stocks such as Telus or Bell-Alliant, for example.

If the carrier prices in full knowledge of the above tax
credit, then other product expenses such as the mortality and
expense risk charge (M&E), or more generally the fund
management fee if multiple foreign funds are offered, can be
reduced, providing higher tax-deferred yield to clients.

SUMMARY

According to aspects illustrated herein, there is provided
a computer-based method for adaptive construction of an
optimal portfolio subject to a leverage constraint, including:
storing computer executable instructions in a memory ele-
ment of a computer; and executing, using a processor for the
computer, the computer readable instructions to: obtain a
plurality of asset return data for said each asset in a plurality
of assets in a portfolio; populate an initial estimated port-
folio covariance matrix. Each row in the initial estimated
portfolio covariance matrix represents an asset from the
plurality of assets. Each column in the initial estimated
portfolio covariance matrix represents an asset from a plu-
rality of assets in a portfolio. Each entry in the initial
estimated portfolio covariance matrix is a co-variance of a
return of the asset represented in the row for said each entry
with respect to performance of the asset represented in the
column for said each entry. The method includes executing,
using the processor, the computer readable instructions to:
compute an initial respective optimal portfolio weight for
each asset included in the plurality of assets, each respective
optimal portfolio weight being a respective proportion of
said each asset included the portfolio; obtain a respective
amount of said each asset such that said each asset forms a
respective portion of the portfolio substantially equal to the
respective weight for said each asset; populate an updateable
matrix decomposition using the estimated portfolio covari-
ance matrix and a scaling factor, the scaling factor limiting
a degree of negativity for said each respective optimal
portfolio weight; obtain at least one first update to the
plurality of asset return data for said each asset in the
plurality of assets; update the updateable matrix decompo-
sition to include the at least one first update to return data for
each asset in the updateable matrix decomposition; modify
the respective optimal portfolio weights using the updated
matrix decomposition; and modify the assets in the portfolio
so that the assets form respective portions of the portfolio
substantially equal to the modified respective weights for the
assets by purchasing an additional quantity of at least one
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asset included in the portfolio to increase an amount of the
at least one asset included in the portfolio or selling a portion
of at least one asset included in the portfolio to decrease an
amount of the at least one asset included in the portfolio. The
updateable matrix decomposition is updated for one new
row of asset returns at a time, and the floating-point opera-
tion count to perform the update is asymptotically no more
than quadratic in the number of assets.

According to aspects illustrated herein, there is provided
a computer-based apparatus for adaptive construction of an
optimal portfolio subject to a leverage constraint, including:
a memory element of a computer configured to store com-
puter executable instructions and a processor for the com-
puter configured to execute the computer readable instruc-
tions to: obtain a plurality of asset return data for said each
asset in a plurality of assets in a portfolio; and populate an
initial estimated portfolio covariance matrix. Each row in
the initial estimated portfolio covariance matrix represents
an asset from the plurality of assets. Each column in the
initial estimated portfolio covariance matrix represents an
asset from a plurality of assets in a portfolio. Each entry in
the initial estimated portfolio covariance matrix is a co-
variance of a return of the asset represented in the row for
said each entry with respect to performance of the asset
represented in the column for said each entry. The processor
is configured to execute the computer readable instructions
to: compute an initial respective optimal portfolio weight for
each asset included in the plurality of assets, each respective
optimal portfolio weight being a respective proportion of
said each asset included the portfolio; obtain a respective
amount of said each asset such that said each asset forms a
respective portion of the portfolio substantially equal to the
respective weight for said each asset; populate an updateable
matrix decomposition using the estimated portfolio covari-
ance matrix and a scaling factor, the scaling factor limiting
a degree of negativity for said each respective optimal
portfolio weight; obtain at least one first update to the
plurality of asset return data for said each asset in the
plurality of assets; update the updateable matrix decompo-
sition to include the at least one first update to return data for
each asset in the updateable matrix decomposition; modify
the respective optimal portfolio weights using the updated
matrix decomposition; and modify the assets in the portfolio
so that the assets form respective portions of the portfolio
substantially equal to the modified respective weights for the
assets by purchasing an additional quantity of at least one
asset included in the portfolio to increase an amount of the
at least one asset included in the portfolio or selling a portion
of at least one asset included in the portfolio to decrease an
amount of the at least one asset included in the portfolio. The
updateable matrix decomposition is updated for one new
row of asset returns at a time, and the floating-point opera-
tion count to perform the update is asymptotically no more
than quadratic in the number of assets.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are disclosed, by way of example
only, with reference to the accompanying schematic draw-
ings in which corresponding reference symbols indicate
corresponding parts, in which:

FIG. 1 is a schematic block diagram of a computer-based
apparatus for adaptive construction of an optimal portfolio
subject to a leverage constraint;
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FIG. 2 is a flow chart of an embodiment of steps of a
computer based method for adaptive construction of an
optimal portfolio subject to a leverage constraint.

DETAILED DESCRIPTION

At the outset, it should be appreciated that like drawing
numbers on different drawing views identify identical, or
functionally similar, structural elements of the disclosure. It
is to be understood that the disclosure as claimed is not
limited to the disclosed aspects.

Furthermore, it is understood that this disclosure is not
limited to the particular methodology, materials and modi-
fications described and as such may, of course, vary. It is also
understood that the terminology used herein is for the
purpose of describing particular aspects only, and is not
intended to limit the scope of the present disclosure.

Unless defined otherwise, all technical and scientific
terms used herein have the same meaning as commonly
understood to one of ordinary skill in the art to which this
disclosure belongs. It should be understood that any meth-
ods, devices or materials similar or equivalent to those
described herein can be used in the practice or testing of the
disclosure.

From the Platen et. al. papers cited above it is apparent
that the naively-diversified portfolio will approach the opti-
mal portfolio in the limit given the right technical conditions
on the covariance matrix. The “in the limit” aspect is
important, however, since the limit is never actually reached.
The asset return covariance matrix can only be estimated
based on data that has been observed to date and this
estimate will change as new data becomes available. The
number of rows and columns of the asset return covariance
in practical applications will be finite (perhaps 500 to 1,000)
and will not approach infinity since there are a finite number
of securities issuers. The present disclosure is directed to
improving performance within the constraint of approach-
ing, but not attaining, the limit.

It is useful to keep track of the average returns to date and
the square root of the covariance matrix (which can be done
using an updateable matrix decomposition similar to Stew-
art’s URV decomposition, described below) so that the
square root of the covariance matrix can be made available
efficiently as new financial data becomes available. By an
“updateable matrix decomposition”, we mean a matrix fac-
torization of asset return data such that if n is the number of
assets in the portfolio, and a new set of asset returns is
observed, then the matrix decomposition can be updated in
O(n?) operations. This means, using the “Big O” (more
formally, Landau) asymptotic notation familiar in computer
science, that asymptotically on the order of n? operations is
required. This is in contrast to well-known matrix decom-
positions like the SVD (Singular Value Decomposition)
which require O(n®) operations to update.

Then, the full Luenberger solution (which enables valu-
ation of arbitrary asset portfolios, including long-short strat-
egies, i.e. portfolios with positive and negative asset
weights) and the Platen-restricted solution (which enables
valuation of portfolios with nonnegative weights) can be
determined at any time. Depending on the applicable atti-
tude toward risk, the weights for a fractional optimal port-
folio can be determined either with or without the Platen
restriction, or with partial Platen restriction limiting how
negative the weights can be (the leverage constraint). Fur-
ther, the weights can be updated over time. By “weights” for
a portfolio, we mean the respective portion of each asset
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included in the portfolio. For example, an asset comprising
5% of the portfolio would have a weight of 5%.

The present disclosure includes a method for initializing
an updateable matrix decomposition similar to Stewart’s
URYV decomposition with an priori covariance matrix using
the Singular Value Decomposition (SVD) (based on histori-
cal data, market-consistent data, or an arbitrary initial esti-
mate) as documented in “testc” from APL workspace
“worldval.w3”. This initial estimate is then updated adap-
tively.

Therefore, using the properties of the optimal portfolio,
options on any of the underlying assets can be valued, as can
options on any linear combination of those assets. It is
therefore also possible to value options on the optimal
portfolio, because the optimal portfolio is just a linear
combination of the underlying assets. As an initial assump-
tion, prices for long-dated calls would typically be more
expensive than those obtained for an underlying stock index
under Black-Scholes pricing, and long-dated puts would
typically be relatively less expensive. The validity of this
initial assumption depends on the parameters used, because
the portion of the portfolio in a saving account, which is
initially assumed to be riskless, is important. Under plau-
sible assumptions, it is possible for long-term calls on the
optimal portfolio to be more expensive than long-term calls
on stocks (because of the optimal portfolio’s outperfor-
mance of other asset portfolios), and for long-term puts to be
much less expensive.

For example, simulation results in the simple two-asset
case can be developed under the simplifying assumption that
all parameters are known exactly and using results from
Chapter 9 the Platen & Heath text. Using function “sim5” in
APL workspace “copogl.w3”, the expression is entered:
12345 sim5 1
to obtain the results
02038
2.177727268 2.140826173 3.783652513 2.774770301
0.2295047564 0.2285291697 0.06423494285

In this example, the underlying assumptions are that the
volatility of the equity index is 15% per year, and that the
risk-free, dividend yield, and equity risk premiums are 3%,
2.2%, and 4%, respectively. The initial value of the stock
index is assumed to be one. In the computed optimal
portfolio, 20% of the portfolio is in a bank savings account
and 80% of the portfolio is invested in the stock index.
Simulating 100,000 sample paths over a thirty-year horizon
with a timestep of 0.01 years using the Euler discretization,
the mean and standard deviation for the ending stock index
are approximately 2.18 and 2.14 respectively, as compared
with the mean and standard deviation of the optimal port-
folio of 3.78 and 2.77 respectively. A thirty-year put on the
stock index with strike at 150% of the initial index value
costs approximately 22.9% of the initial portfolio value
(with prices obtained both through the Black-Scholes for-
mula and by simulation in the real-world measure as a
check) but a similar put on the optimal portfolio costs only
6.4%.

Therefore, given the assumed parameters, an insurance
carrier offering a long-term guarantee of 150% of premium
in a VA can reduce the cost of the guarantee by investing in
the optimal portfolio rather than the stock index portfolio.
The ability to consistently price and hedge options on the
optimal portfolio has immense practical implications
because, if a guarantee of a specific level of long-term
performance for a portfolio is required, then the best choice
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(i.e. the choice with the lowest hedging costs relative to
performance as measured by the Sharpe ratio) is the Platen-
restricted optimal portfolio.

The reasoning for the transition from the optimal portfolio
as formally defined and as programmed in “sim5” (including
an assumption that the optimal portfolio will typically
include some proportion of the risk-free asset) to the asser-
tion that a diversified world stock portfolio, with no risk-free
asset, approximates the optimal portfolio is presented below.

A theoretical explanation is provided by the Diversifica-
tion Theorem (Section 7 of the Platen paper and virtually all
of the Platen & Le paper). Key technical conditions (as
outlined in the Platen & Le paper) are:

1. Definition 4.1 in the paper, which essentially limits how
much can be invested in each asset.

2. Equation 4.4, which appears to limit continuous asset
volatilities relative to jumps.

3. Equation 4.6, which limits the impact of each source of
trading uncertainty.

The Naive Diversification Theorem in Platen & Rendek
(Approximating the Numeraire Portfolio by Naive Diversi-
fication, Research Paper 281) has a technical requirement to
be met in Equation 4.12 in that paper. That is, in essence, if
the typical element of the covariance matrix falls off faster
than 1/L"2, where L is the number of assets in the portfolio,
then the naively diversified portfolio is the optimal portfolio.

It is apparent that using sectors rather than individual
stocks works well when applying this theorem to actual
investment: for example, two automobile manufacturers will
likely have higher correlation than two companies in two
different sectors. Therefore, working with sectors initially
increases the likelihood that the technical conditions on the
covariances required for the Naive Diversification Theorem
will hold.

A much simpler (although heuristic) explanation for the
assertion that a diversified world stock portfolio, with no
risk-free asset, approximates the optimal portfolio is that the
Luenberger solution for the optimal portfolio (see below,
“luenl” in “copogl.w3”) is in general leveraged (shorts the
risk-free asset) because of an assumption that equities will
have excess returns. If the Luenberger solution is scaled
back to avoid negative weights, typically the risk-free asset
forced to zero first in the resulting solution.

Operational Details:

1. In the single risky asset case with known parameters,
function “sim5” in APL. workspace “copogl.w3” can be
used to derive portfolio weights, to simulate results, and to
price options.

2. In the multiple risky asset case with known parameters,
function “luenl” in APL workspace “copogl.w3” can be
used to derive portfolio weights.

3. In the multiple risky asset case with known parameters,
a Monte Carlo approach as in function “test3” in APL
workspace “gop2.w3” can be used to derive portfolio
weights and test the consistency of assumed asset returns
and volatility with then-current risk-free rates.

4. In the multiple risky asset case where parameter
estimation is required and updated asset return information
is available, function “testc” in APL workspace
“worldval . w3” is applicable, and shows how an initial
covariance estimate can be improved as additional asset
return data is observed while efficiently updating portfolio
weights for the leverage-constrained optimal portfolio.

5. Since real-life return data can be collinear or nearly so,
in real life it is unwise to assume that the covariance matrix
can be inverted, for example: the matrix may be singular or
close to it. A Moore-Penrose inverse or other generalized
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inverse can be used to overcome the singularity problem.
The Moore-Penrose inverse is described in, for example,
Linear Algebra and Its Applications, 2/ edition, by Gilbert
Strang, Academic Press © 1980 where it is called the
“pseudoinverse”. This is an important refinement in practice
and is applied in the “worldval.w3” workspace if necessary.

6. An updatable matrix decomposition similar to Stew-
art’s URV decomposition is applied to incoming data to
efficiently update the optimal portfolio composition, as
described above, in the “worldval.w3” workspace. There
are two three aspects to such application:

a. The decomposition is an updatable rank-revealing
decomposition that is updated using a limited number
of Givens rotations, hyperbolic Givens rotations, and
Householder transformations, all of which can be
applied in O(n?) time. The estimated square root of the
asset return covariance matrix can therefore be updated
in O(n?) operations. Givens rotations and Householder
transformations are described in, for example, Numeri-
cal Methods That Work, by Forman S. Acton, Harper &
Row, © 1970.

b. The ideal portfolio composition can be solved for as
each new vector of asset returns is received. If cova-
riances and extra returns are fairly stable then the
solution will be relatively stable. Rebalancing at inter-
vals (quarterly or more frequently) can be performed.
Depending on the estimated condition number of the
square root of the covariance matrix, either an O(n®) (or
preferably an O(n?)) solution method is used to develop
the updated weights. Condition number estimation for
a right-triangular matrix is described in Section 3.5.4 of
Matrix Computations, 2" edition, by Gene H. Golub
and Charles F. Van Loan © 1989 The Johns Hopkins
University Press. Note also that both forward and
backward substitution in a triangular system can be
performed in O(n?) operations as outlined in Section
3.1 of the same text.

According to a paper on “naive diversification” (defined
as equal allocation across the available asset classes), as
stated in Optimal Versus Naive Diversification: How Ineffi-
cient is the 1/N Portfolio Strategy?, by Victor DeMiguel,
Lorenzo Garlappi, and Raman Uppal, (c) 2007 Oxford
University Press, available at: http:/faculty.london.edu/
avmiguel/DeMiguel-Garlappi-Uppal-RFS.pdf), short-sale
constraints can be addressed by scaling the covariance
matrix used in optimization. This is not intuitively obvious,
and suggests a simple algorithm as follows:

1. Solve naively. If all asset proportions are nonnegative
the solution is finished.

2. If any asset proportions are negative, scale down the
covariance matrix to get the portfolio that just barely avoids
negative asset proportions.

3. A variation of this approach is implemented in function
“luenl” in which excess returns, rather than covariances, are
scaled.

Program Method of Operation: updateable matrix decom-
position source is in 1s5.dpr

The rank-revealing URV decomposition is an updateable
matrix decomposition sharing many of the desirable char-
acteristics of the Singular Value Decomposition. The URV
matrix decomposition was introduced by G. W. Stewart in
An Updating Algorithm for Subspace Tracking (IEEE Trans-
actions on Signal Processing, Vol. 40, No. 6, June 1992) for
phased-array radar applications. The decomposition takes its
name from the decomposition of a general matrix into
orthogonal matrices U and V and a right triangular matrix R
as described below. Some key characteristics are:
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1. The decomposition is A=URV' where U and V are
orthogonal and R is right-triangular.

2. Rank deficiency can be detected easily because the
determinant of R is just the product of its diagonal elements.

3. Constructing the decomposition uses only Givens rota-
tions, which are orthogonal transformations, so the problem
is as well-conditioned as possible.

4. The method allows efficient determination of the con-
dition number of the problem (since efficient condition
number estimators for the triangular matrix R exist, and
since the condition numbers for orthogonal matrices U and
V are one by definition).

Note that “testc” calls into “L.55.DLL” which implements
an updateable matrix decomposition similar to the URV
decomposition, but with the following additional character-
istics:

1) Exponential weighting is supported so that older asset
return data (possibly from a different market regime)
can accorded less weight than more recent asset return
data.

2) The square root of the (possibly exponentially-
weighted) covariance matrix can be generated from the
R matrix in O(n?) time using a limited number of
hyperbolic Givens rotations and Householder transfor-
mations.

Also note that “testc” initializes the updateable matrix
decomposition using pseudo-data created with function
“svd3.” This allows for the use of an arbitrary initial estimate
of the covariance matrix that can then be updated as addi-
tional data is observed.

Function Description. Program is implemented in APL
and Delphi. The Delphi component is a DLL (dynamic link
library) that can be called from an interpreted language such
as APL but provides the speed of a compiled language.

The following are the top level functions: “sim5”;
“luenl”; “test3”; and “testc.”

Top-level function “sim5”
“copogl.w3”: method of operation:

1. Compute portfolio proportions in risk-free and risk
assets.

2. Simulate, using Euler discretization, sample paths for
the stock index and the growth-optimal portfolio.

3. Display the mean and standard deviation for terminal
values of stock index and growth-optimal portfolio.

4. Compute an example put option value for the stock
index using the Black-Scholes formula.

5. Compute an example put option value for the stock
index using an average over sample paths.

6. Compute an example put option value for the growth-
optimal portfolio using an average over sample paths.

7. Display the results of the computations in steps 4
through 6.

Functions called by “sim5” (with notes on operation and
subfunction calls):

1. norm—generate a vector of normally-distributed ran-
dom numbers.

2. msd—calculate mean and standard deviation of a
vector of numbers.

3. black—use the Black-Scholes formula for a European
option to compute the call price, put price, call delta, put
delta, and call gamma, based on security price, exercise
price, time to expiry, the riskfree rate, the dividend rate, and
volatility (standard deviation of returns).

4. unormf—calculate an approximate percentile of the
cumulative distribution function of the normal distribution,
using an approximation from the Handbook of Mathematical
Functions by Milton Abramowitz and Irene Stegun.

in APL workspace
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Top-level function “luenl”
“copogl.w3”: method of operation:

1. Calculate portfolio weights using built-in APL matrix
inversion and display.

2. Calculate portfolio weights using the Moore-Penrose
inverse and display.

3. Calculate portfolio weights using the Moore-Penrose
inverse and a scaling factor and display.

4. Calculate portfolio weights using SVD and a scaling
factor and display.

5. Calculate portfolio weights using SVD, the Moore-
Penrose inverse, and a scaling factor and display.

Functions called by “luenl” (with notes on operation and
subfunction calls):

1. mpi—calculates the Moore-Penrose inverse of a matrix
using SVD (the singular value decomposition).

2. svd3—{factors a matrix into matrices U, W, and V,
where U and V are orthogonal matrices and W is a diagonal
matrix. Calls into Delphi DLL “svd3.dll”.

Top-level function “test3” in APL workspace “gop2.w3”:
method of operation:

1. Generate multivariate asset scenarios using assumed
growth rates and covariances.

2. Generate multiple sets of random nonnegative portfolio
weights.

3. Approximate the optimal portfolio weights as the
generated set of weights maximizing the expected log-return
over the scenarios.

4. Calculate and display the implied risk-free rate calcu-
lated from the Luenberger equation E[1/R*]=1/R.

5. Calculate and display call and put option prices from
the generated scenarios.

6. Calculate and display call and put option prices from
the Black-Scholes formula using the implied risk-free rate
and a volatility derived from the covariance matrix and the
portfolio weights.

To the extent that the implied risk-free rate displayed in
step (4) differs materially from current risk-free rates, then
the scenario generation assumptions may not be market
consistent.

Functions called by “test3” (with notes on operation and
subfunction calls):

1. genScens3—generate multivariate asset scenarios
using assumed growth rates and an assumed covariance
matrix.

2. choleski—calculate the Choleski square-root decom-
position of a positive definite symmetric matrix.

3. norm—generate a vector of normally-distributed ran-
dom numbers.

4. genRandomWeights—generate random nonnegative
portfolio weights summing to 1 using Procedure 4 described
by Wang and Zionts in their paper Random-Weight Genera-
tion in Multiple Criteria Decision Models (available at
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.109.791&rep=repl&type=pdf)

5. sort—sort a vector of numbers into ascending order.

6. black—use the Black-Scholes formula for a European
option to compute the call price, put price, call delta, put
delta, and call gamma, based on security price, exercise
price, time to expiry, the riskfree rate, the dividend rate, and
volatility (standard deviation of returns).

7. unormf—calculate an approximate percentile of the
cumulative distribution function of the normal distribution,
using an approximation from the Handbook of Mathematical
Functions by Milton Abramowitz and Irene Stegun.

in APL workspace
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Top-level function “testc” in
“worldval.w3”: method of operation:

1. Generate an assumed actual underlying covariance
matrix using rebff2 with one set of parameters and ran-
domly-generated variances.

2. Generate an estimated covariance matrix using rebff2
with a perturbed set of parameters and a second set of
randomly-generated variances.

3. Using SVD, generate pseudo-data to initialize the
updateable matrix decomposition with the square root of the
estimated covariance matrix.

4. Repeatedly simulate asset return data from the assumed
actual covariance matrix and use it to update the matrix
decomposition.

5. Output results demonstrating that the estimated square
root of the covariance matrix, times its transpose, converges
on the assumed actual covariance matrix (Note that the
convergence test runs in O(n*) time and is a diagnostic, not
part of the algorithm per se).

6. Using the estimated condition number x of the esti-
mated square root of the covariance matrix, solve for
updated portfolio weights using one of two methods:

A. If the estimated condition number x is within toler-

ance, solve using forward and backward substitution in
a triangular system (runs in O(n>) operation).

B. If the estimated condition number k is out of tolerance,
solve using the Moore-Penrose inverse (runs in O(n®)
operations).

Functions called by “testc” (with notes on operation and

subfunction calls):

1. rebff2—generates a positive definite correlation matrix
from input parameters.

2. svd3—factors a matrix into matrices U, W, and V,
where U and V are orthogonal matrices and W is a diagonal
matrix. Calls into Delphi DLL “svd3.dll”

3.1s_get_handle—calls into L.S5 dll to set up a regression
context and return a handle to it.

4. 1s_add_data—calls into LS5 dll to add a new row of
data to a regression context by folding it into the R matrix
and making required changes to the other matrices in the
regression context. “Folding it into” means adding it as a
new row to the R matrix and then applying Givens rotations
in a sequence that a) reduces each element of the new row
to zero and b) preserves the upper-triangular structure of the
R matrix. Also tracks the (possibly exponentially-weighted)
mean and mean square for each item (asset return) in the row
for use in Is_get_root_covar.

5. Is_get_root_covar—=calls into LS5 dll to return the
square root of the covariance matrix associated with a
regression context. The Delphi procedure TLSContext.get-
RootCovar implements this calculation. Key steps in the
implementation include:

A. Adjusting the R matrix to remove the mean for each

item using hyperbolic Givens rotations if necessary;

B. Constructing an n by n matrix of adjustment factors for
exponential weighting (where n is the number of asset
returns) and apply two Householder transformations,
zeroing out all but the top left 3 by 3 submatrix.

C. Finding the two nonzero eigenvalues of the submatrix
and transform the associated eigenvectors of length 3
back up to length n by applying the inverses of the
Householder transformations in step 2.

D. Updating the R matrix with the two eigenvectors using
either ordinary or hyperbolic Givens rotations depend-
ing on the signs of the associated eigenvalues.

6. mpi—calculates the Moore-Penrose inverse of a matrix

using SVD (the singular value decomposition).

7. condest—estimates the condition number of a triangu-
lar matrix.

APL  workspace
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8. lforward—performs forward substitution into a left
(lower) triangular matrix.

9. tback—performs back substitution into a right (upper)
triangular matrix.

10. 1s_close_handle—calls into LS5 dll to deallocate a
regression context handle.

For the functions in (7)-(9), condition estimators, forward
substitution, and backward substitution are described above:
Algorithmic Details.

FIG. 1 is a schematic block diagram of computer-based
apparatus 100 for adaptive construction of an optimal port-
folio subject to a leverage constraint. Apparatus 100
includes computer 102 with memory eclement 104 and
processor 106. Element 104 is configured to store computer
executable instructions 108 and portfolio 110. Processor 106
is configured to execute the computer readable instructions
to obtain asset return data 112 for each asset 114 in portfolio
110 and populate initial estimated portfolio covariance
matrix 116, including rows 118 and columns 120. Each row
118 represents a respective asset 114A from assets 114 in
portfolio 110. Each column 120 represents a respective asset
114B from assets 114. Each entry 122 in initial estimated
portfolio covariance matrix 116 is a co-variance 122 of
return 124 A of asset 114A for the respective row 118 with
respect to return 124B of asset 114B for the respective
column 120.

Processor 106 is configured to execute the computer
readable instructions to compute initial respective optimal
portfolio weight 126 for each asset 114. Each respective
optimal portfolio weight 126 is a respective proportion of
the respective asset 114 included the portfolio. Processor
106 is configured to execute the computer readable instruc-
tions to obtain respective amount 128 of each asset 114 such
that each asset 114 forms a respective portion of portfolio
110 substantially equal to weight 126 for the asset. Processor
106 is configured to execute the computer readable instruc-
tions to populate updateable matrix decomposition 130
using initial estimated portfolio covariance matrix 116 and
scaling factor 132. Scaling factor 132 limits degree of
negativity 134 for each portfolio weight 126.

Processor 106 is configured to execute the computer
readable instructions to obtain at least one update 136 to
asset return data 112 and update matrix decomposition 130
to include respective update 136 for each asset 114 in matrix
decomposition 130. Matrix decomposition 130 is updated
for one new row of asset return data 112 at a time and the
floating-point operation count to perform the update is
asymptotically no more than quadratic in the number of
assets 114. Processor 106 is configured to execute the
computer readable instructions to modify portfolio weights
126 using matrix decomposition 130, and modify assets 114
so that assets 114 form respective portions of portfolio 110
substantially equal to the respective modified weights 126
for each asset 114 by: purchasing additional quantity 138 of
at least one asset 114 included in portfolio 110 to increase an
amount of the at least one asset 114 included in portfolio
110; or, selling portion 140 of at least one asset 114 included
in portfolio 110 to decrease an amount of the at least one
asset 114 included in portfolio 110.

In an example embodiment, processor 106 is configured
to execute the computer readable instructions to obtain at
least one update 142 to asset return data 112 for each asset
114 and update matrix decomposition 130 by: replacing each
update 136 in matrix decomposition 130 with a respective at
least one update 142; modify the optimal portfolio weights
126 using the updated matrix decomposition 130; and
modify respective amounts of assets 114 in portfolio 110 so
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that each asset 114 forms a respective portions of the
portfolio 110 substantially equal to modified weight 126 for
the asset.

In an example embodiment, modifying respective optimal
portfolio weights 126 using updated matrix decomposition
130 includes: using estimated condition number x of the
estimated square root B of covariance matrix 116. In the case
where K is within tolerance 144, updated portfolio weights
126 are computed by performing back substitution with
matrix B' and vector w, where the vector w is computed by
performing forward substitution with the matrix B and the
vector v. In the case where K is out of tolerance 144, updated
portfolio weights 126 are computed as M'*M*v, where M is
the Moore-Penrose inverse of B, * is the matrix product, ' is
the matrix transpose and v is the scaling factor times the
excess of the expected return for each asset over the risk-free
rate.

In an example embodiment, the processor for the com-
puter configured to execute the computer readable instruc-
tions to obtain historical covariance data 146, and populat-
ing initial estimated portfolio covariance matrix 116
includes populating initial estimated portfolio covariance
matrix 116 with historical covariance data 146. In an
example embodiment, processor 106 is configured to
execute the computer readable instructions too obtain
implied market covariance data 148 and populating initial
estimated portfolio covariance matrix 116 includes populat-
ing initial estimated portfolio covariance matrix 116 with
implied market covariance data 148.

In an example embodiment, computing initial respective
optimal portfolio weight 126 for each asset 114 includes
using estimated portfolio covariance matrix 116 and scaling
factor 132. In an example embodiment, using estimated
portfolio covariance matrix 116 and scaling factor 132
includes using estimated condition number K of the esti-
mated square root B of covariance matrix 116. In the case
where K is within tolerance 144, updated portfolio weights
126 are computed by performing back substitution with
matrix B' and vector w, where the vector w is computed by
performing forward substitution with the matrix B and the
vector v. In the case where K is out of tolerance 144, updated
portfolio weights 126 are computed as M'*M*v, where M is
the Moore-Penrose inverse of B, * is the matrix product, ' is
the matrix transpose and v is the scaling factor times the
excess of the expected return for each asset over the risk-free
rate.

In an example embodiment, computing initial respective
optimal portfolio weight 126 for each asset 114 includes
computing each respective optimal portfolio weight 126 as
a proportion of a number 150 of assets 114 in portfolio 110.
In an example embodiment, computing initial respective
optimal portfolio weight 126 for each asset 114 includes
computing each optimal portfolio weight 126 equal to a
same value.

In an example embodiment, populating matrix decompo-
sition 130 includes performing respective operations on
matrix U, matrix R, and matrix V. Matrices U and V are
respective orthogonal matrices and matrix R is a right-
triangular matrix. In an example embodiment, performing
respective operations on matrix U, matrix R, and matrix V
includes using a sequence of Givens rotations to maintain
the right-triangular structure of matrix R. In an example
embodiment, performing respective operations on matrix U,
matrix R, and matrix V includes using a sequence of
ordinary and hyperbolic Givens rotations. In an example
embodiment, performing respective operations on matrix U,
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matrix R, and matrix V includes using a sequence of
ordinary and hyperbolic Givens rotations and Householder
transformations.

In an example embodiment, portfolio 110 is included in
tax-deferred variable annuity 152. In an example embodi-
ment, portfolio 110 is included in tax-flow-through variable
annuity 154.

In an example embodiment, the processor for the com-
puter configured to execute the computer readable instruc-
tions to transmit request 156 to computer 158 operated by or
under the control of a broker/dealer to purchase quantity 138
or sell portion 140. A dealer/broker is defined as an entity
registered with the Securities and Exchange Commission,
under the Exchange Act of 1934 to trade securities.

It will be appreciated that various of the above-disclosed
and other features and functions, or alternatives thereof, may
be desirably combined into many other different systems or
applications. Various presently unforeseen or unanticipated
alternatives, modifications, variations, or improvements
therein may be subsequently made by those skilled in the art
which are also intended to be encompassed by the following
claims.

The invention claimed is:

1. A computer-based method for adaptive construction of
an optimal portfolio subject to a leverage constraint, com-
prising:

storing computer executable instructions in a memory

element of a first computer; and,

executing, using a processor for the computer, the com-

puter readable instructions to:
obtain a plurality of asset return data for each asset in
a plurality of assets in a portfolio;
populate an initial estimated portfolio covariance
matrix, wherein:
each row in the initial estimated portfolio covariance
matrix represents an asset from the plurality of
assets;
each column in the initial estimated portfolio cova-
riance matrix represents an asset from the plurality
of assets; and,
each entry in the initial estimated portfolio covari-
ance matrix is a co-variance of a return of the asset
represented in the row for said each entry with
respect to performance of the asset represented in
the column for said each entry;
compute an initial respective optimal portfolio weight
for each asset included in the plurality of assets, each
respective optimal portfolio weight being a respec-
tive proportion of said each asset included in the
portfolio;
obtain a respective amount of said each asset such that
said each asset forms a respective portion of the
portfolio substantially equal to the respective weight
for said each asset;
populate an updateable matrix decomposition using the
estimated portfolio covariance matrix and a scaling
factor, the scaling factor limiting a degree of nega-
tivity for said each respective optimal portfolio
weight;
obtain at least one first update to the plurality of asset
return data for said each asset in the plurality of
assets;
update the updateable matrix decomposition to include
the at least one first update to return data for each
asset in the updateable matrix decomposition;
modify the respective optimal portfolio weights using
the updated matrix decomposition; and,
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modify the assets in the portfolio so that the assets
forming respective portions of the portfolio are sub-
stantially equal to the modified respective weights
for the assets by:
purchasing an additional quantity of at least one asset
included in the portfolio to increase an amount of
the at least one asset included in the portfolio; or,

selling a portion of at least one asset included in the
portfolio to decrease an amount of the at least one
asset included in the portfolio;

wherein the updateable matrix decomposition is
updated for one new row of asset returns at a time;
and,

a number of floating-point operations used to perform
the update is asymptotically less than or equal to a
quadratic in a number of assets.

2. The computer-based method of claim 1, further com-
prising:
executing, using a processor for the computer, the com-
puter readable instructions to:

transmit a request, to a second computer operated by or
under the control of a broker/dealer, to:
purchase the additional quantity of at the least one

asset; or,
sell the portion of the at least one asset.
3. The computer-based method of claim 1, further com-
prising:
executing, using a processor for the computer, the com-
puter readable instructions to:

obtain at least one second update to the plurality of
asset return data for said each asset; and,

update the updateable matrix decomposition by:
replacing each at least one first update in the updated

matrix decomposition with a respective at least
one second update;
modifying the respective optimal portfolio weights
using the updated matrix decomposition; and,
modifying respective amounts of the assets in the
portfolio so that said each asset forms a respective
portion of the portfolio substantially equal to the
respective modified weights for said each asset.
4. The computer-based method of claim 3, wherein modi-
fying the respective optimal portfolio weights using the
updated matrix decomposition includes:
using an estimated condition number ¥ of an estimated
square root B of the covariance matrix; and:

in a case where k is within tolerance, said updated
portfolio weights are computed by performing back
substitution with a matrix B' and a vector w, where
the vector w is computed by performing forward
substitution with a matrix B and a vector v; or,

in a case where k is out of tolerance, said updated
portfolio weights are computed as M'*M*v, where:
M is the Moore-Penrose inverse of B;

* is the matrix product;
' is the matrix transpose; and,
v is the scaling factor times an excess of an expected
return for each asset over a risk-free rate.
5. The computer-based method of claim 1, further com-
prising:
executing, using a processor for the computer, the com-
puter readable instructions to:

obtain historical covariance data, wherein populating
the initial estimated portfolio covariance matrix
includes populating the initial estimated portfolio
covariance matrix with the historical covariance
data.
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6. The computer-based method of claim 1, further com-
prising:

executing, using a processor for the computer, the com-

puter readable instructions to:

obtain implied market covariance data, wherein popu-
lating the initial estimated portfolio covariance
matrix includes populating the initial estimated port-
folio covariance matrix with the implied market
covariance data.

7. The computer-based method of claim 1, wherein com-
puting an initial respective optimal portfolio weight for each
asset included in the plurality of assets includes using the
estimated portfolio covariance matrix and the scaling factor.

8. The computer-based method of claim 7, wherein using
the estimated portfolio covariance matrix and the scaling
factor includes:

using an estimated condition number k of an estimated

square root B of the covariance matrix; and:

in a case where K is within tolerance, said updated
portfolio weights are computed by performing back
substitution with a matrix B' and a vector w, where
the vector w is computed by performing forward
substitution with a matrix B and a vector v; or,

in a case where K is out of tolerance, said updated
portfolio weights are computed as M"*M*v, where:
M is the Moore-Penrose inverse of B;
* is the matrix product;
' is the matrix transpose; and,
v is the scaling factor times an excess of an expected

return for each asset over a risk-free rate.

9. The computer-based method of claim 1, wherein com-
puting an initial respective optimal portfolio weight for each
asset included in the plurality of assets includes computing
said each respective optimal portfolio weight as a proportion
of the number of assets in the portfolio.

10. The computer-based method of claim 1, wherein
computing an initial respective optimal portfolio weight for
each asset included in the plurality of assets includes com-
puting said respective optimal portfolio weight equal to a
same value.

11. The computer-based method of claim 1, wherein:

populating an updateable matrix decomposition includes

performing respective operations on matrix U, matrix
R, and matrix V; and,

matrices U and V are respective orthogonal matrices and

matrix R is a right-triangular matrix.

12. The computer-based method of claim 11, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of Givens rotations to
maintain a right-triangular structure of matrix R.

13. The computer-based method of claim 11, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of ordinary and hyper-
bolic Givens rotations.

14. The computer-based method of claim 11, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of ordinary and hyper-
bolic Givens rotations and Householder transformations.

15. A tax-deferred variable annuity deploying the method
recited in claim 1.

16. A tax-flow-through variable annuity deploying the
method recited in claim 1.

17. The computer-based apparatus of claim 1, wherein
computing an initial respective optimal portfolio weight for
each asset included in the plurality of assets includes using
the estimated portfolio covariance matrix and the scaling
factor.

10

15

20

25

30

35

40

45

50

55

60

65

20

18. The computer-based apparatus of claim 17, wherein
using the estimated portfolio covariance matrix and the
scaling factor includes:

using an estimated condition number ¥ of an estimated

square root B of the covariance matrix; and:

in a case where k is within tolerance, said updated
portfolio weights are computed by performing back
substitution with a matrix B' and a vector w, where
the vector w is computed by performing forward
substitution with a matrix B and a vector v; or,

in a case where k is out of tolerance, said updated
portfolio weights are computed as M'*M*v, where:
M is the Moore-Penrose inverse of B;
* is the matrix product;
' is the matrix transpose; and,
v is the scaling factor times an excess of an expected

return for each asset over a risk-free rate.

19. A computer-based apparatus for adaptive construction
of an optimal portfolio subject to a leverage constraint,
comprising:

a memory element of a computer configured to store

computer executable instructions; and,

a processor for the computer configured to execute the

computer readable instructions to:
obtain a plurality of asset return data for said each asset
in a plurality of assets in a portfolio;
populate an initial estimated portfolio covariance
matrix, wherein:
each row in the initial estimated portfolio covariance
matrix represents an asset from the plurality of
assets;
each column in the initial estimated portfolio cova-
riance matrix represents an asset from the plurality
of assets; and,
each entry in the initial estimated portfolio covari-
ance matrix is a co-variance of a return of the asset
represented in the row for said each entry with
respect to performance of the asset represented in
the column for said each entry;
compute an initial respective optimal portfolio weight
for each asset included in the plurality of assets, each
respective optimal portfolio weight being a respec-
tive proportion of said each asset included in the
portfolio;
obtain a respective amount of said each asset such that
said each asset forms a respective portion of the
portfolio substantially equal to the respective weight
for said each asset;
populate an updateable matrix decomposition using the
estimated portfolio covariance matrix and a scaling
factor, the scaling factor limiting a degree of nega-
tivity for said each respective optimal portfolio
weight;
obtain at least one first update to the plurality of asset
return data for said each asset in the plurality of
assets;
update the updateable matrix decomposition to include
the at least one first update to return data for each
asset in the updateable matrix decomposition;
modify the respective optimal portfolio weights using
the updated matrix decomposition; and,
modify the assets in the portfolio so that the assets form
respective portions of the portfolio substantially
equal to the modified respective weights for the
assets by:
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purchasing an additional quantity of at least one asset
included in the portfolio to increase an amount of
the at least one asset included in the portfolio; or,
selling a portion of at least one asset included in the
portfolio to decrease an amount of the at least one
asset included in the portfolio,
wherein the updateable matrix decomposition is
updated for one new row of asset returns at a time,
and,
a number of floating-point operations used to perform
the update is asymptotically less than or equal to a
quadratic in a number of assets.

20. The computer-based apparatus of claim 19, wherein
the processor for the computer is configured to execute the
computer readable instructions to:

transmit a request, to a second computer operated by or

under the control of a broker/dealer, to:

purchase the additional quantity of at the least one
asset; or,

sell the portion of the at least one asset.

21. The computer-based apparatus of claim 19, wherein
the processor for the computer is configured to execute the
computer readable instructions to:

obtain at least one second update to the plurality of asset

return data for said each asset: and,

update the updateable matrix decomposition by:

replacing each at least one first update in the updated
matrix decomposition with a respective at least one
second update;

modifying the respective optimal portfolio weights
using the updated matrix decomposition; and,

modifying respective amounts of the assets in the
portfolio so that said each asset forms a respective
portion of the portfolio substantially equal to the
respective modified weights for said each asset.

22. The computer-based apparatus of claim 19, wherein
modifying the respective optimal portfolio weights using the
updated matrix decomposition includes:

using an estimated condition number k of an estimated

square root B of the covariance matrix; and:

in a case where K is within tolerance, said updated
portfolio weights are computed by performing back
substitution with a matrix B' and a vector w, where
the vector w is computed by performing forward
substitution with a matrix B and a vector v; or,

in a case where K is out of tolerance, said updated
portfolio weights are computed as M"*M*v, where:
M is the Moore-Penrose inverse of B;
* is the matrix product;
' is the matrix transpose; and,

10

15

20

25

30

35

40

45

22

v is the scaling factor times an excess of an expected
return for each asset over a risk-free rate.

23. The computer-based apparatus of claim 19, wherein:

the processor for the computer configured to execute the

computer readable instructions to obtain historical
covariance data; and,

populating the initial estimated portfolio covariance

matrix includes populating the initial estimated portfo-
lio covariance matrix with the historical covariance
data.

24. The computer-based apparatus of claim 19, wherein:

the processor for the computer configured to execute the

computer readable instructions to obtain implied mar-
ket covariance data; and,

populating the initial estimated portfolio covariance

matrix includes populating the initial estimated portfo-
lio covariance matrix with the implied market covari-
ance data.

25. The computer-based apparatus of claim 19, wherein
computing an initial respective optimal portfolio weight for
each asset included in the plurality of assets includes com-
puting said each respective optimal portfolio weight as a
proportion of the number of assets in the portfolio.

26. The computer-based apparatus of claim 19, wherein
computing an initial respective optimal portfolio weight for
each asset included in the plurality of assets includes com-
puting said respective optimal portfolio weight equal to a
same value.

27. The computer-based apparatus of claim 26, wherein:

populating an updateable matrix decomposition includes

performing respective operations on matrix U, matrix
R, and matrix V; and,

matrices U and V are respective orthogonal matrices and

matrix R is a right-triangular matrix.

28. The computer-based apparatus of claim 26, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of Givens rotations to
maintain a right-triangular structure of matrix R.

29. The computer-based apparatus of claim 26, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of ordinary and hyper-
bolic Givens rotations.

30. The computer-based apparatus of claim 26, wherein
performing respective operations on matrix U, matrix R, and
matrix V includes using a sequence of ordinary and hyper-
bolic Givens rotations and Householder transformations.

31. A tax-deferred variable annuity deploying the appa-
ratus recited in claim 19.

32. A tax-flow-through variable annuity deploying the
apparatus recited in claim 19.
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