US011169912B2

a2 United States Patent
Li et al.

US 11,169,912 B2
Nov. 9, 2021

(10) Patent No.:
45) Date of Patent:

(54) ENTITY AND RELATIONSHIP JOINT

EXTRACTION METHOD ORIENTED TO
SOFTWARE BUG KNOWLEDGE

(71)
(72)

Applicant: Yangzhou University, Jiangsu (CN)

Inventors: Bin Li, Jiangsu (CN); Dingshan Chen,
Jiangsu (CN); Cheng Zhou, Jiangsu
(CN); Xiaobing Sun, Jiangsu (CN)

(73)

*)

Assignee: Yangzhou University, Jiangsu (CN)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

@1
(22)

Appl. No.: 17/054,301

PCT Filed: Aug. 28, 2019

(86) PCT No.:

§ 371 (e)(1),
(2) Date:

PCT/CN2019/102930

Nov. 10, 2020

(87) PCT Pub. No.: W02020/093761

PCT Pub. Date: May 14, 2020

Prior Publication Data

US 2021/0240603 Al Aug. 5, 2021

(65)

(30) Foreign Application Priority Data

Nov. 5, 2018 (CN) oooooceeiirerees 201811306356.2
(51) Int.CL
GOGF 11/36

GO6F 16/28

(2006.01)
(2019.01)

(Continued)

(52) US. CL
CPC GOG6F 11/3692 (2013.01); GOGF 11/3664
(2013.01); GOGF 16/288 (2019.01); GO6F

16/9024 (2019.01); GO6N 7/005 (2013.01)

(58) Field of Classification Search
CPC GOGF 11/3664; GOGF 11/3692; GOGF
16/288; GOGF 16/9024; GO6N 7/005

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0102315 Al
2017/0032249 Al*

4/2012 Holtmanns
2/2017 Chougule

(Continued)

GO6N 5/02

FOREIGN PATENT DOCUMENTS

CN 102622510 A 8/2012
CN 104699614 A 6/2015
(Continued)

OTHER PUBLICATIONS

Naresh Kumar Nagwani et al., “Weight Similarity Measurement
Model Based, Object Oriented Approach for Bug Databases Mining
to Detect Similar and Duplicate Bugs”, [Online], pp. 202-207,
[Retrieved from Internet on Jul. 1, 2021], <https://dl.acm.org/doi/
pdf/10.1145/1523103.1523145>, (Year: 2009).*

(Continued)

Primary Examiner — Ziaul A Chowdhury
(74) Attorney, Agent, or Firm — Simpson & Simpson,
PLLC

(57) ABSTRACT

Provided is an entity and relationship joint extraction
method oriented to software bug knowledge. The method
includes collecting text data of an open-source bug library
and preprocessing the text data to obtain a bug text data
corpus; extracting, from the bug text data corpus, a state-
ment S for describing a bug, and then processing S, and
using the processed S as a subsequent input statement;
constructing an entity and relationship joint extraction
model; obtaining, in conjunction with the constructed entity
and relationship joint extraction model based on a transition
system, an entity set E and a relationship set R correspond-
ing to the input statement; and outputting the entity set E and

(Continued)

Entity and relationship joint extraction model

Input representation
S, W, W3, Wa)

Transition system

| Optimal transition action sequence

Model state at momentt : m,

\

i

)

i ;) Empiy
) S

&
je Stack LST™
i

Entity set E

Final transition state
Ta= {LILR B

Relationship set R

ahaller
Rectangle

US 11,169,912 B2
Page 2

the relationship set R to complete joint extraction of entities

and relationships.

10 Claims, 3 Drawing Sheets

(51) Int.CL
GO6N 7/00 (2006.01)
GO6F 16/901 (2019.01)
(56) References Cited

2018/0095004
2018/0173495
2020/0073882
2020/0073933

U.S. PATENT DOCUMENTS

Al* 4/2018 Ide ..o
Al* 6/2018 Podderccc.......
Al* 3/2020 Guggilla ..

Al* 3/2020 Zhao ...,

GO6N 7/005

GOGF 40/295

FOREIGN PATENT DOCUMENTS

CN 106951365 A 7/2017
CN 107273295 A 10/2017
CN 107832781 A 3/2018
CN 109492113 A 3/2019

OTHER PUBLICATIONS

Abdelmonim Naway et al.,, “Using Deep Neural Network for
Android Malware Detection”, [Online], pp. 1-9, [Retrieved from
Interent on Jul. 1, 2021], <https://arxiv.org/ftp/arxiv/papers/1904/
1904.00736.pdf>, (Year: 2019).*

Alexander Breckel, “Error Mining: Bug Detection through Com-
parison with Large Code Databases”, [Online], pp. 175-178, [Retrieved
from Interent on Jul. 1, 2021], <https://ieeexplore.IEEE.org/stamp/
stamp.jsp?tp=&arnumber=6224278> (Year: 2012).*

Yu Zhou et al., “Combining Text Mining and Data Mining for Bug
Report Classification”, [Online], pp. 311-320, [Retrieved from
Interent on Jul. 1, 2021], <https://ieeexplore.IEEE.org/stamp/stamp.

GO6N 3/04 jsp?tp=&arnumber=6976097> (Year: 2014).*

.. GOGF 16/353

* cited by examiner

U.S. Patent Nov. 9, 2021 Sheet 1 of 3 US 11,169,912 B2

Bug Repositony
Mozilla

(LData preprocessing

; Bug report ;
| title/description/co |
‘ mments ;

L s
p Part G‘? speech Tokenizer |!
! tagger {
; L
; mmmmmmmmmmmmmmmmmmmm s
Bug text
coTpus
 Aeed (2)Statement nput i
representation b

Ad o c
< {(DJomt model construction ;

ey

Entity and relationship
joint extraction model

<:- (DObtain an entity set E and a E
irelationship set R)

K BModet output ;
¥

Entity set B
Relationship set R

FIG. 1

U.S. Patent Nov. 9, 2021 Sheet 2 of 3 US 11,169,912 B2

Entity and relationship joint extraction model

Input representation
S=(w1, W, Wa,.. ., W)

_lmtial transition state
T{): { E,jz [}9 ﬂn E‘V‘: aW'Za‘W% nee >WTIEE},'>§Z}' {z; }

Transition system
LI P T T - iOptimal transition action sequence
A

{ Y Model state at moment t © m,

sf/ \E
o Y. q 8
a3 S Buffer LSTM
\
k8

Eﬁﬂ\ e(wy) h(wy) h(w;)

S e
i Stack LSTN
o o G Stack LSTM
stack Y stack

A j

Action sequence

Final transition state
Tn: (05 ‘E” {]5 { :Es R?’ E)

4

Entity set E
Relationship set R

FIG. 2

U.S. Patent Nov. 9, 2021 Sheet 3 of 3 US 11,169,912 B2

Bug 168

filake] pythion code in browser sheuld foliow flakes convention st Mot St 4
o el with 13
NEW Avsfenod 1o Sl Masilats)

Frouct > Flrefy Bulld Syt Reporied: A yeay .3y
Componesd: + Sowve Cods Analysis Muodified: 5 momhs ago

nage e Byt o4 e} ZQN

R

Bapands on:

TR SBlacks:. fakng

sependancy e { yaph

Open Ixsues Last Updated
! QyeRtags

Bug 1368216 - Python files under browser/folder updated to match PEPE style guide.
4 year ago Broin Mastizada
59 bytes, text/x-review-board-request

petery: review- Detail | Review

FIG. 3

Semantics : should follow

La NW
% I & %
Pythont codez ins browsers shoulds follows flakeBr conventions

I 4 | 4

Semantics tbe_in L

¢

US 11,169,912 B2

1
ENTITY AND RELATIONSHIP JOINT
EXTRACTION METHOD ORIENTED TO
SOFTWARE BUG KNOWLEDGE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application filed under
35 U.S.C. § 371 based on International Patent Application
No. PCT/CN2019/102930, filed on Aug. 28, 2019, which
application claims priority to Chinese Patent Application
No. 201811306356.2, filed with the CNIPA on Nov. 5, 2018,
disclosures of which are incorporated herein by reference in
their entireties.

FIELD

The present disclosure relates to the field of software
maintenance and, in particular, to an entity and relationship
joint extraction method oriented to software bug knowledge.

BACKGROUND

Bug fixing is an important part of a software maintenance
process. With the advent of the big-data era, text data on the
Internet increases dramatically. Similarly, the scale of a
software project also expands and the complexity of a
software project is greatly improved. A large number of bugs
occur in the software development process. How to accu-
rately and efficiently address and solve these bugs has
become the main task at present. On the one hand, these
massive texts contain a wealth of knowledge; and on the
other hand, a large amount of redundant information is
contained in these massive texts. Therefore, we need to think
about how to efficiently and accurately extract entities and
relationships between the entities from the unstructured text
data so that structured knowledge is formed to help people
to quickly obtain key information.

For a large number of bug reports on the Internet, entity
and relationship joint extraction is performed so that the key
information of a bug is extracted to help a software devel-
oper to quickly and efficiently understand bug information
and complete repair. At present, two main methods are
widely used in an entity and relationship extraction task.
One method is series extraction in which entities and rela-
tionships are extracted in series, and the other method is
joint extraction of entities and relationships. The series
method divides this task into two different subtasks, that is,
named entity recognition and relationship recognition. Tra-
ditional named entity recognition models are linear statisti-
cal models, such as a Hidden Markov model (HMM) and a
conditional random field (CRF) model. Recently, some
neural network structures have also been successfully
applied to named entity recognition. The named entity
recognition is regarded as a sequence tagging task. The
existing relationship recognition methods may also be
divided into a method based on manual construction of
characteristics and a neural network method. This separate
processing method is relatively simple, and each module is
relatively flexible. However, this method ignores the con-
nection between the two tasks, and the result of entity
recognition may affect extraction of relationships. Different
from the traditional series method, during joint extraction, a
model is used to extract entities and relationships. The term
“joint learning” is not a recent term. In the field of natural
language processing, researchers have long used a joint
model based on traditional machine learning to perform joint

15

20

25

40

45

60

65

2

learning on some closely related natural language processing
tasks, such as joint learning of entity recognition and entity
standardization, joint learning of word segmentation and
part-of-speech tagging. This method is applied to entity
recognition and relationship extraction so that entity and
relationship information is effectively integrated and a good
effect is achieved. A single model is used in joint extraction
of entities and relationships. Most joint methods are imple-
mented based on characteristics. A large number of models
based on LSTM which have been used recently can reduce
manual effort. However, this method is implemented based
on characteristics and depends heavily on other natural
language processing tools that may introduce errors. There-
fore, to reduce the work of manual characteristic extraction,
an end-to-end model based on a neural network is proposed
so that entities and relationships are jointly extracted. The
end-to-end model maps an input statement into a meaningful
vector and then generates a sequence. The end-to-end model
is widely used in machine translation and the sequence
tagging task. In most methods, bidirectional LSTM is used
in coding of an input statement, but the decoding methods
are always different. For example, a CRF layer is used in
decoding of a tag sequence, while an LSTM layer is used in
generation of the tag sequence. Although these models can
share the parameters of entity extraction and relationship
extraction in the same model, entity extraction and relation-
ship extraction are performed separately and redundant
information is easily generated.

SUMMARY

The technical problem to be solved by the present dis-
closure is how to provide, in conjunction with the relevant
characteristics of data in the software bug field, an entity and
relationship joint extraction method oriented to software bug
knowledge.

The solution to achieve the object of the present disclo-
sure is an entity and relationship joint extraction method
oriented to software bug knowledge. The method includes
the steps described below.

In step 1, text data of an open-source bug library is
collected and the text data is preprocessed so that a bug text
data corpus is obtained.

In step 2, a statement S for describing a bug is extracted
from the bug text data corpus obtained in step 1, and S is
processed and then the processed S is used as an input
statement of step 4.

In step 3, an entity and relationship joint extraction model
based on a transition system is constructed.

In step 4, an entity set E and a relationship set R
corresponding to the input statement of step 2 are obtained
in conjunction with the constructed entity and relationship
joint extraction model based on the transition system of step
3.

In step 5, the entity set E and the relationship set R
obtained in step 4 are output so that joint extraction of
entities and relationships is completed.

Compared with the existing art, the present disclosure has
significant advantages as follows. (1) Through the joint
extraction method provided in the present disclosure, it is
achievable not only to discover potential entities, connec-
tions between entities and relationships, and connections
between relationships and relationships in bug statements,
but also to avoid error propagation in series extraction of bug
relationship triple. (2) In the present disclosure, by using a
set of transition rules is formed by an arc-eager algorithm,
after a series of transition actions, an entity recognition and

US 11,169,912 B2

3

relationship extraction joint task is represented by a directed
graph that is directly generated by using a transition-based
method so that the continuity and consistency of the task are
ensured. (3) In the present disclosure, the design of the
directed graph can make the relationship between entities no
longer a one-to-one relationship so that complex bug text
data can be dealt with. (4) In the present disclosure, the
decoding process of a statement is modeled as a construction
process of a transition sequence through the transition-based
method; and through learning, the next step of transition
actions can be accurately predicted, effective action
sequences can be generated, effective entity arcs and rela-
tionship arcs can be recognized, and the directed graph of
input bug statements can be constructed.

The present disclosure will be described below in further
detail in conjunction with the drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a flowchart of an entity and relationship joint
extraction method oriented to software bug knowledge
according to the present disclosure.

FIG. 2 is a diagram of an entity and relationship joint
extraction model according to the present disclosure.

FIG. 3 is a screenshot of a bug report of extracted bug
1368216 according to an embodiment of the present disclo-
sure.

FIG. 4 is an output directed graph of a title of bug
1368216 according to an embodiment of present disclosure.

DETAILED DESCRIPTION

Referring to FIG. 1, in the present disclosure, an entity
and relationship joint extraction method oriented to software
bug knowledge includes the steps described below.

In step 1, text data of an open-source bug library is
collected and the text data is preprocessed so that a bug text
data corpus is obtained.

The text data includes a title, a description and a comment
in a bug report and a question and an answer in a question
and answer website.

The step of preprocessing the text data to obtain the bug
text data corpus includes the step described below.

The text data is preprocessed by using a natural language
processing tool, and the preprocessed related text data is
stored in a form of text so that the bug text data corpus is
obtained. The preprocessing includes text extraction, word
segmentation, part-of-speech tagging and lemmatization.

In step 2, a statement S for describing a bug is extracted
from the bug text data corpus obtained in step 1, S is
processed and then the processed S is used as an input
statement of step 4. The statement S for describing the bug
is described below.

w, denotes the i-th word in a statement sequence S, and i=1,
2,...,n

The step of processing S includes the steps described
below.

In step 2-1, word embedding processing is performed on
S. A certain word w, is represented by a two-dimensional
vector: w, and Wj. Each word may be represented as
x~max{0, V-[w, W]+b}.

In step 2-2, Bi-LSTM coding processing is performed on
S processed in step 2-1. Bi-LSTM is used for processing a
sequence in two directions by using two separate LSTM
layers: forward LSTM and backward LSTM, and X=(x,, X,

20

25

30

35

40

45

55

60

65

4

X3, - - -, X,,) 15 used as the input. Forward LSTM codes a
sequence of words in series, that is, x, —x,,, which is denoted

as T. Backward LSTM codes a sequence in a reverse

direction, that is, x,—>xX,, which is denoted as h . hi=[}_1)l-, E]
is used for representing coding information of w,. Finally, S
is processed and the output is represented by the formula

H,~{h,, h, hs,. .., h}. In the formula, h—[h, T] and i=1,
2,...,0n

In step 3, an entity and relationship joint extraction model
based on a transition system is constructed. The step of
constructing the entity and relationship joint extraction
model based on the transition system includes the steps
described below.

In step 3-1, an initial transition state T, of the entity and
relationship joint extraction model based on the transition
system is determined.

In step 3-2, an optimal transition action corresponding to
the initial transition state T, of step 3-1 is determined and the
optimal transition action is performed on the initial transi-
tion state T, so that a transition state at a next moment is
obtained.

In step 3-3, an optimal transition action corresponding to
the transition state at the next moment is determined, the
optimal transition action is performed on the transition state
at the next moment, and such loop is performed until a final
transition state T, is reached, so as to complete the con-
struction of the entity and relationship joint extraction model
based on the transition system.

The transition state is represented by an LSTM-based
method by using the formula described below.

T=(0,9.¢,p.R.E)

In the formula, o denotes a stack storing a generated entity,
d denotes a transition stack storing an entity temporarily
popping out of o and then repressed into o, e denotes a stack
storing part of entity blocks being processed, [3 denotes a
buffer storing unprocessed words, R denotes a relationship
set, and E denotes an entity set.

The initial transition state T, is a transition state in which
[is not empty and o, 9, e, R and E are empty, where T, is
represented by the formula described below.

To=([LI LI Liwpwa,ws, ..., w,,1.0.9)

In the formula, m denotes the number of the unprocessed
words.

The final transition state T,, is a transition state in which
B and e are empty, where T, is represented by the formula
described below.

L=00,[LI LRE)

The transition action specifically includes generating a
directed graph by using a transition strategy formed by an
arc-eager algorithm. According to characteristics of the
directed graph, the transition strategy includes two types of
transition actions: an entity generation action and a relation-
ship generation action. (1) The entity generation action is
used for generating an entity arc. (2) The relationship
generation action is used for generating a relationship arc.

In the present disclosure, according to entities and rela-
tionships, 10 types of transition actions are designed. The 10
types of transition actions include 7 types of relationship
arcs and 3 types of entities. The specific description is made
in Table 1.

US 11,169,912 B2

5
TABLE 1

Specific description of transition actions

Recognition Transition
Type Action State Transition
Entity O-Delete Popping word w; out of stack f3
recognition Gen-Shift Transferring word w; from stack f3 to stack e
Gen- Popping out the “entity block™ at top of
Ner(y) stack e, performing tagging, pressing the
representation of this block into
stack B, and adding this entity to set E
Relationship Left,- Generating a relationship arc from e; to e;
recognition Reduce T
(e;4—e)) (e; denotes a core node and
e; denotes ‘a modification node)
and popping e; out of stack o
Right,- Generating a relationship arc from e; to e;
i r
Shift (e; —e;) and storing all entities and
e; in stack d into stack o
No-Shift Storing all entities and e; in stack 6 into
stack o
No-Reduce Popping e; out of stack o
Left,-Pass Generating a relationship arc from e; to e;
T
(e;4¢;) and placing e; at the top
of stack &
Right,- Generating a relationship arc from e; to ¢;
T
Pass (e; —e;) and placing e; at the top
of stack’d
No-Pass Placing e, at the top of stack &

The step of determining the optimal transition action
corresponding to the transition state is described below.

The optimal transition action corresponding to the tran-
sition state is determined in conjunction with a softmax
function and an arc-standard algorithm based on greedy
search. In conjunction with FIG. 2, the step of determining
the optimal transition action corresponding to the transition
state is performed in the manner described below.

(1) It is assumed that a transition state of the entity and
relationship joint extraction model based on the transition
system at moment t is described below.

m,~max{0,Z}

In the formula, Z=W[o,; J,; a; P, e]+d, W denotes a
parameter matrix, o, 9,, a, f§,, e, denote a state of a at
moment t, a state of & at moment t, a state of A at moment
t, a state of f at moment t, a state of e at moment t
respectively, and d denotes a bias item in a neural network.

(2) The probability of a certain transition action a, at
moment t is obtained by using the softmax function, where
the obtained probability is described below.

explgs m + 4a,)
pla; | m;) = T

exp(gy i +qa’)
a’ €A(S,B)

In the formula, a, denotes the transition action at the moment
t, g, denotes a column vector of an embedding representa-
tion of the transition action a, q, denotes a bias item
corresponding to the transition action a, m, denotes a state
of the model, that is, a coding set of information about all
decisions made by the model, at the moment t, A(S, B)
denotes an adoptable effective action set when a current state
is stored, a' denotes a certain transition action in set A, g,
denotes a column vector of an embedding representation of
the transition action a', and T denotes transposition.

15

20

25

40

45

50

55

60

65

6

The probability of a transition action sequence a is
described below.

lal

plalo)=I1_,“p(a,m,)

In the formula, lal denotes the number of transition actions
in the transition action sequence a. (3) The (2) is repeated so
that probabilities of all transition action sequences are
obtained, and then the transition action sequence with the
highest probability is used as the optimal transition action
corresponding to the transition state at the moment t.

In step 4, according to a series of optimal transition
actions obtained during the construction of the entity and
relationship joint extraction model based on the transition
system of step 3, the series of transition actions is performed
on the input statement of step 2 so that the entity set E and
the relationship set R corresponding to the input statement
are obtained. The entity set E is described below.

E:{(ei:ej:r)}
In the formula, 1<i<j=<n, r denotes a user-defined entity type
of a software bug, e, and e; denote entities, and r includes
core, GUI, Network, I/O, Driver, File System, Hardware,
Language, API, Standard, Platform, Framework, Defect test,
Mobile, common adjective and common verb.
The relationship set R is described below.

R={(e;e;D}

In the formula, 1=<i<j=<n, 1 denotes a user-defined attribute tag
of a bug relationship, and e, and e, denote entities; and 1 is
described in Table 2 below.

TABLE 2

User-defined attribute tag of bug relationship

Relationship Relationship

Attribute Attribute

Name Characteristic Description

Sibling Transitivity and ~ Owned class and attribute are derived
relationship ~ symmetry from a same parent class

Identical Transitivity and ~ Having the same meaning and different
relationship ~ symmetry representations of same knowledge
Inclusive Inclusiveness Involving content of another entity,
relationship such as a concept, nature, etc.
Opposite Antisymmetry Two should be non-concurrent and
relationship mutually exclusive between each other
Inheritance Reciprocal A parent-child relationship and a
relationship reflexivity child-inheriting-parent relationship

attribute exist

Illustrative Illustration Entity A is a description or an operation

relationship (an adjective or a verb) of entity B
Causal Dependence Entity A is a reason for a conclusion
relationship of entity B

Semantically Transitivity and A semantic connection exists between
related symmetry the entity A and the entity B

In step 5, the entity set E and the relationship set R
obtained in step 4 are output so that joint extraction of
entities and relationships is completed.

The present disclosure will be described below in further
detail in conjunction with an embodiment.

Embodiment

Referring to FIG. 1, in the present disclosure, an entity
and relationship joint extraction method oriented to software
bug knowledge includes the steps described below.

In step 1, a bug report of an open-source bug library is
collected and all text information such as a title, a descrip-
tion and a comment is extracted from the bug report. Then
the text data is preprocessed in manners such as statement

US 11,169,912 B2

7

segmentation, word segmentation and part-of-speech tag-
ging so that a bug corpus is obtained. The bug report of the
obtained data source in this embodiment is shown in FIG. 3.

In step 2, a statement S for describing a bug is extracted
from the bug text data corpus obtained in step 1. In this
embodiment, the first statement S1 obtained from the bug
report of FIG. 3 is “Python code in browser should follow
flake8 convention.”. The result of S1 preprocessed in step 1
is “Python NNP code NN in IN browser NN should MD
follow VB flake8 NNP convention NN”. This result under-
goes word embedding representation and Bi-LSTM layer
coding processing and then the processed result serves as the
input of a model.

In step 3, an entity and relationship joint extraction model
based on a transition system is constructed. The specific
transition actions defined in this embodiment are described
in Table 1, and the bug relationship types are described in
Table 2.

In step 4, in conjunction with the constructed entity and
relationship joint extraction model based on the transition

15

8

(y) action and browser, is repressed into . (8) Through
Rightr-Shift, browser, is pressed into stack o and a relation-
ship arc (pythonl, browser,, be_in) from pythonl to
browser, is generated. (9) shoulds pops out of § through the
O-Delete action. (10) follow, pops out of [through the
O-Delete action. (11) flake8,, enters from f3 to e through the
Gen-Shift transition action. (12) conventiong enters from f3
to e through the Gen-Shift transition action. (13) An entity
tag (flake8,, conventiong, SD) is made for an entity block
flake8_conventiong through the Gen-Ner(y) transition action
and conventiong is repressed into (3. (14) Through No-Pass,
browser, is placed at the top of stack d. (15) Through
No-Pass, python, is placed at the top of stack d. (16) Finally,
through Right -Pass, conventiong is pressed into stack & and
a relationship arc (code,, browser,, be_in) from python, to
conventiong is generated. Finally, the final transition state is
reached so that the entity set E and the relationship set R are
obtained. In this embodiment, the specific transition process
is described in Table 3.

TABLE 3

Specific transition process

Action
State Sequence o o e [§ R E
0 Initial [] [] [] [Wi, W, ..., Wg] @ [%]
1 Gen-Shift [] [] [w,] [Wo, W3, . .., Wg] O %]
2 Gen-Shift [] [] [Wy, Wol [W3, Wy...,Wg] O %]
3 Gen-Ner(y) [] [] [] [Wi*, Wayon ey [%] EU
ws] {Wl, W2, LA}
4 No-Shift [w*] [1] [] [Ws, Wy o .., Wg] O —
5 O-Delete [w*] [1] [] [Wy, Ws, oo, Wg] — —
6 Gen-Shift [w,*] [] A [Ws, W Wo, Wg] — —
7 Gen-Ner(y) [w;*] [1] [] [Wa*, Ws,y .o v EU
wg] {Wa, Wy, NW
8 Right-Shift [w,*,w*] [] (1 W5 WeWnwel RU{wywi —
be_in}
9 O-Delete [wi*, wa*] [] [] [w7, wg] — -
10 O-Delete [wi*, wa*] [] [] [wy, wg; — —
11 Gen-Shift [w*, w,*] [[w-] [ws]
12 Gen-Shift [w,*, wy*] [] [wW2, ws] []
13 Gen-Ner(y) [w*, ws*] [] [] [ws*] EU
{w7, wg, SD}
14 No-Pass [w,*] [w,*] [] [wg*]
15 No-Pass [] [wa*, wi*] [] [ws*]
16 Right-Pass [] [wa*, wi*] [] [ws*] R U {w,, wg,
should_follow}
17 Final State [w,*, wy*, wg*] [] [[] R E

system of step 3, for the input statement S1 obtained from
the bug corpus in step 2, first the initial transition state T, of
the input statement S1 is determined as To=([], [], [],
[Python code in browser should follow flake8 convention],
@, @). In this case, the buffer stack storing unprocessed
words is represented by the formula f=[Python code in
browser should follow flake8 convention], and then the
words in 3 are processed in sequence. In this embodiment,
the model implementation process is as follows: (1) First,
pythonl enters from f§ to e through a Gen-Shift transition
action. (2) code2 also enters from [to e through the
Gen-shift transition action. (3) An entity tag (pythonl,
code2, LA) is made for an entity block pythonl code2
through a Gen-Ner(y) transition action and pythonl is
repressed into . (4) The entity pythonl is repressed into
stack a through a No-Shift transition action. (5) in; pops out
of §§ through an ODelete action. (6) browser, enters from f3
to e through the Gen-Shift. (7) An entity tag (browser,,
browser,, NW) is made for browser, through the Gen-Ner

50

60

65

In step 5, the entity set E and the relationship set R
obtained in step 4 are output so that joint extraction of
entities and relationships is completed. In this embodiment,
the directed graph of the specific output result is shown in
FIG. 4, the specific output result includes 3 entities and 2
relationships. A solid arrow in the figure indicates the
relationship in an entity so that the type of the entity is
described. For example, python is the Language-class entity
that has previously been classified. A hollow arrow in the
figure indicates the relationship between an entity and
another entity. For example, the relationship between
Python_code and browser is a semantic relationship, and the
extracted predicate is be_in. Finally, the entity set E and the
relationship set R of this bug are recognized. E={(Python,
code, LA), (browser, browser, NW), (flake8, convention,
SD)} and R={(Python_code, browser, be_in),
(Python_code, flake8_convention, should follow)}.

The method of the present disclosure is centered on the
predefined bug relationship type. Through semantics, tran-

US 11,169,912 B2

9

sition-based dependence analysis strategy and Bi-LSTM
neural network method, joint modeling is performed on the
relationship triple formed by the bug entity relationships. In
this method, two subtasks of bug entity extraction and
relationship recognition are closely linked, and the key
information of a bug text is extracted. In this manner, a
software developer can quickly and efficiently understand
bug information and complete bug fixing.

What is claimed is:
1. An entity and relationship joint extraction method
oriented to software bug knowledge, comprising:
step 1: collecting text data of an open-source bug library
and preprocessing the text data to obtain a bug text data
corpus;
step 2: extracting, from the bug text data corpus obtained
in step 1, a statement S for describing a bug, processing
S, and then using the processed S as an input statement;
step 3: constructing an entity and relationship joint extrac-
tion model based on a transition system, comprising:
step 3-1: determining an initial transition state T, of the
entity and relationship joint extraction model based
on the transition system;
step 3-2: determining an optimal transition action cor-
responding to the initial transition state T, of step 3-1
and performing the optimal transition action on the
initial transition state T, to obtain a transition state at
a next moment; and,
step 3-3: determining an optimal transition action cor-
responding to the transition state at the next moment,
performing the optimal transition action on the tran-
sition state at the next moment, and looping in such
manner until a final transition state T,, is reached, so
as to complete the construction of the entity and
relationship joint extraction model based on the
transition system;
wherein the transition state is represented by an LSTM-
based method by using the following formula:

T=(0,9,¢,B,R E),

where o denotes a stack storing a generated entity, &
denotes a transition stack storing an entity tempo-
rarily popping out of o and then repressed into o, e
denotes a stack storing part of entity blocks being
processed, [denotes a buffer storing unprocessed
words, R denotes a relationship set, and E denotes an
entity set;

wherein the initial transition state T, is a transition state
in which f is not empty and o, 9, e, R and E are
empty, wherein T, is represented by:

To=([LLLL LIWowa,ws, - .

where m denotes a number of the unprocessed words;
and

wherein the final transition state T,, is a transition state
in which f and e are empty, wherein T,, is represented
by:

Wl> O, @),

T=0d,[1.[1. R, E);

step 4: obtaining, in conjunction with the constructed
entity and relationship joint extraction model based on
the transition system in step 3, an entity set E and a
relationship set R corresponding to the input statement
of step 2; and,

15

20

25

30

35

40

45

50

55

60

65

10

step 5: outputting the entity set E and the relationship set
R obtained in step 4 to complete joint extraction of
entities and relationships.

2. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein the
text data of step 1 comprises a title, a description and a
comment in a bug report, and a question and an answer in
a question and answer website.

3. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 1, preprocessing the text data to obtain the bug text data
corpus comprises:

preprocessing the text data by using a natural language
processing tool, and storing the preprocessed related
text data in a form of text to obtain the bug text data
corpus, wherein the preprocessing comprises text
extraction, word segmentation, part-of-speech tagging
and lemmatization.

4. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 2, the statement S for describing the bug is:

S={wwyws, ..., W}

where w, denotes an i-th word in a statement sequence S, and
i=1,2,...,n

5. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 2, processing S comprises:

step 2-1: performing word embedding processing on S;
and,
step 2-2: performing Bi-directional Long Short-Term
Memory (Bi-LSTM) coding processing on S processed
in step 2-1.
6. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 3-1 to step 3-3, the transition action comprises:

generating a directed graph by using a transition strategy
formed by an arc-eager algorithm, wherein according
to characteristics of the directed graph, the transition
strategy comprises two types of transition actions:

(1) an entity generation action, which is used for
generating an entity arc; and,

(2) a relationship generation action, which is used for
generating a relationship arc.

7. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 3-2 to step 3-3, determining the optimal transition
action corresponding to the transition state comprises: deter-
mining, in conjunction with a softmax function and an
arc-standard algorithm based on greedy search, the optimal
transition action corresponding to the transition state, which
comprises:

(1) assuming that a transition state of the entity and
relationship joint extraction model based on the tran-
sition system at moment t is:

m,~max{0,Z}

where Z=W]o, 8, a,; B, e]+d, W denotes a parameter
matrix, o,, ,, a,, §,, e, denote a state of o at the moment
t, a state of d at the moment t, a state of A at the moment
t, a state of 3 at the moment t, a state of e at the moment
t respectively, and d denotes a bias item in a neural
network;

US 11,169,912 B2

11

(2) obtaining a probability of a certain transition action a,
at the moment t by using the softmax function, wherein
the obtained probability is:

explgd m; + qa,)
pla: | me) = n ,

expl(gy M +qa’)
a’ €A(S,B)

.. . 10
where a, denotes the transition action at the moment t, g,

denotes a column vector of an embedding representa-
tion of the transition action a,, q,, denotes a bias item
corresponding to the transition action a,, m, denotes a
state of the model, that is, a coding set of information
about all decisions made by the model, at the moment
t, A(S, B) denotes an adoptable effective action set
when a current state is stored, a' denotes a certain
transition action in set A, g,. denotes a column vector
of an embedding representation of the transition action
a', and T denotes transposition, and,

wherein a probability of a transition action sequence a is:

plalo)=IL_,"“p(a,Im,)

where lal denotes a number of transition actions in the
transition action sequence a; and,

(3) repeating (2) to obtain probabilities of all transition
action sequences, and then using a transition action
sequence with a highest probability as an optimal
transition action corresponding to the transition state at
the moment t.

8. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 1, wherein in
step 4, obtaining, in conjunction with the constructed entity
and relationship joint extraction model based on the transi-
tion system in step 3, the entity set E and the relationship set 3
R corresponding to the input statement of step 2 comprises:

performing, according to a series of optimal transition
actions obtained during the construction of the entity
and relationship joint extraction model based on the
transition system of step 3, a series of transition actions
on the input statement of step 2 to obtain the entity set
E and the relationship set R corresponding to the input
statement.

9. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 4, wherein the
entity set E obtained in step 4 is:

E:{(ei’ej’r)}

where l=isj=n, r denotes a user-defined entity type of a
software bug, e, and e; denote entities, and r comprises
core, GUIL, Network, 1/O, Driver, File System, Hard-
ware, Language, API, Standard, Platform, Framework,
Defect test, Mobile, common adjective and common
verb; and,

wherein the relationship set R is:

R={(e;e;D}

25

30

40

50

55

12

where 1<i<j<n, | denotes a user-defined attribute tag of a
bug relationship, and e, and ¢, denote entities; and 1 is
described in a Table 2 as follows:

TABLE 2

The user-defined attribute tag of the bug relationship

Relationship Relationship

Attribute Attribute

Name Characteristic Description

Sibling Transitivity and ~ Owned class and attribute are derived

relationship ~ symmetry from a same parent class

Identical Transitivity and ~ Having a same meaning and different

relationship ~ symmetry representations of same knowledge

Inclusive Inclusiveness Involving content of another entity,

relationship such as a concept, nature, etc.

Opposite Antisymmetry Two should be non-concurrent and

relationship mutually exclusive between each other

Inheritance Reciprocal A parent-child relationship and a

relationship reflexivity child-inheriting-parent relationship
attribute exist

Illustrative Illustration Entity A is a description or an operation

relationship (an adjective or a verb) of entity B

Causal Dependence Entity A is a reason for a conclusion

relationship of entity B

Semantically Transitivity and A semantic connection exists between

related symmetry the entity A and the entity B.

10. The entity and relationship joint extraction method
oriented to software bug knowledge of claim 8, wherein the
entity set E obtained in step 4 is:

E={(e;e;r)}

where 1=<isj=n, r denotes a user-defined entity type of a
software bug, e, and e, denote entities, and r comprises
core, GUI, Network, 1/O, Driver, File System, Hard-
ware, Language, API, Standard, Platform, Framework,
Defect test, Mobile, common adjective and common
verb; and,

wherein the relationship set R is:

R~{(e,e,D)}

where 1=i<j=n, | denotes a user-defined attribute tag of a
bug relationship, and e, and e, denote entities; and 1 is
described in a Table 2 as follows:

TABLE 2

The user-defined attribute tag of the bug relationship

Relationship
Attribute
Name

Relationship
Attribute

Characteristic ~ Description

Sibling
relationship
Identical
relationship

Transitivity and Owned class and attribute are derived
symmetry from a same parent class

Transitivity and Having a same meaning and different
symmetry representations of same knowledge.

