US011386136B2

a2 United States Patent (10) Patent No.: US 11,386,136 B2
Li et al. 45) Date of Patent: Jul. 12, 2022
(54) AUTOMATIC CONSTRUCTION METHOD (58) Field of Classification Search
OF SOFTWARE BUG KNOWLEDGE GRAPH CPC ... GO6F 16/367; GOGF 8/427; GOGN 20/00

. . . . See application file for complete search history.
(71) Applicant: Yangzhou University, Jiangsu (CN)

(72) Inventors: Bin Li, Jiangsu (CN); Dingshan Chen, (56) References Cited
gicelﬁ%su (CN); Xiaobing Sun, Jiangsu U.S. PATENT DOCUMENTS
2009/0240569 Al* 9/2009 Ramer GOGF 16/9577
(73) Assignee: Yangzhou University, Jiangsu (CN) 707/999.01
2015/0095303 Al 4/2015 Sonmez et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 341 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 16/641,414 CN 105608232 5/2016
CN 105760495 7/2016
(22) PCT Filed: Sep. 5, 2018 (Continued)
(86) PCT No.: PCT/CN2018/104155 Primary Examiner — Eliyah S. Harper
$ 371 (1) (74) Attorney, Agent, or Firm — Simpson & Simpson,
(2) Date: Feb. 24, 2020 PLLC
(87) PCT Pub. No.. WO2019/137033 7 ABSTRACT
PCT Pub. Date: Jul. 18, 2019 Provided is an automatic construction method of a software
bug knowledge graph. The method includes extraction of a
(65) Prior Publication Data relationship triple of a bug and domain classification of the

bug. Specifically, the method includes: collecting bug infor-

US 2020/0257717 A1~ Aug. 13, 2020 L . . .
mation in a bug library and processing bug description

(30) Foreign Application Priority Data information, obtaining a verb phrase and a noun phrase in a
description sentence by means of natural language process-
Jan. 12, 2018 (CN) ceovvriveveveeee 201810047681.5 ing, and then obtaining a relationship triple of the bug
according to a dependency relationship between words
(51) Int. CL related to the bug information, extracting a domain feature
GO6F 16/36 (2019.01) of the bug, performing learning and training with a semi-
GO6N 20/00 (2019.01) supervised classifier to enable the classifier automatically to
(Continued) classify unlabeled triples, storing all the classified relation-
(52) US. CL ship triples in a graph database, and thus constructing a
CPC GO6F 16/367 (2019.01); GOG6F 8/427 software bug knowledge graph.
(2013.01); GO6F 11/3624 (2013.01);
(Continued) 1 Claim, 3 Drawing Sheets

Extation of bug.
Ielationship triple

i
I Bugm
I

T e [)
S o e)

Softwar bug
s kaowledge gtaph

US 11,386,136 B2

Page 2
(51) Imt. ClL
GO6F 40/253 (2020.01)
GO6F 40/211 (2020.01)
GO6F 40/289 (2020.01)
GO6F 8/41 (2018.01)
GO6F 11/36 (2006.01)
(52) US. CL
CPC GO6F 40/211 (2020.01); GO6F 40/253
(2020.01); GO6F 40/289 (2020.01); GO6N
20/00 (2019.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2016/0210602 Al* 7/2016 Siddique GO06Q 20/384
2018/0239751 Al* 8/2018 Durr ..o GO6N 20/00

2018/0307904 Al* 10/2018 Patil GO6K 9/628
2018/0336362 Al* 11/2018 Guttmann GO6N 5/04
2019/0205794 Al* 7/2019 Hsu ...cccovviiviennn. GO6N 5/022
FOREIGN PATENT DOCUMENTS
CN 107330125 11/2017
CN 108121829 6/2018
CN 108121829 A * 6/2018 ... GO6F 11/3624

* cited by examiner

U.S. Patent Jul. 12, 2022 Sheet 1 of 3 US 11,386,136 B2

- — T I

Extraction of bug Scrape bug defect |

relationship triple L. (formation |
i’" ””””””””””””””””””””” }
. Bug description Bug defect |
; Bugil) information property X 1]

e mne mnm smns mnn

| Regular Dependency Word form :
; expression syntax parsing reduction |
-

£

fyverh/ |

o - —

i
P verb phiase (VE) i grammatical |
] phuase OF) i Qj stucture of a |
{
i

i
§
§
i
i
i
§
§
i
§
i
§
§
i
§
i
E 1
| jewnphrase B
i
§
i
§
§
§
§
i
§
§
§
§
i
§
§
§
§

i | Bug relationship triple - {
i (NF1,VP,NPZ) Bug property triple
i (BuglD property, X) | {}
it ; r _I;xtn%crgm K
e TR S e Lpioperty friple
i Add BuglD 4 <
=
2
' Bug domain @ Bxtract bug | {
Eclggsjﬁcaﬁon classification feature § 1
mmmmmmmmm |
f Relationship triple with feature |
i (NP, VP NP features) i
| | |
mmmmm !
i Learning }
i and training | i
E o - }
Unclassified relationship tuple CUM elmccifice i
E (NP, VP NP, features,?) SVM classifier }
mmmmmm |
i F Defect domain | §
i t classification ;
i A i
! Classified triple i
i (NP, VP NP teatures, label) }
5 i
b e e rem e e rr ot e e em e e oem e oo e ke e e e cert eem o e wen remt 2 em e eem o e e e £ et em oo 2
y
sl -
b Graph Software bug
! database) knowledge graph
-

o

FIG. 1

U.S. Patent Jul. 12, 2022 Sheet 2 of 3 US 11,386,136 B2

Bug 215603

Firelox ignores click on Continue with Mixed Active Content block on GET form submit

UNCONFIRMED Unassigned

» Status (UNCONFIRMED bug with nio priciity |

Product: > Core Reported: 4 years ago
Component; - DOM: Secutity Moditied: 2 vears age

Status: UNCONFIRMED

T
H

e People (Reporter: Milan Babuskov, Unassigned) [

Assignee: » Unassigned Reporter: Milan Babuskov
riage Owner: Christoph Kerschbaumerf:ckerschb]
CC: 4 people

» Tracking (Blocks: 1 bug) |

-

MixedContentBlocker

Version: 23 Branch Blocks:

Patform: x¥6 Linux
Points: -~

» Firefox Tracking Flags (Not tracked) i

This bug is not curently tracked.

»Dretails (Whiteboard: [domsecurity -backlog]) |

Whiteboard: [domsecurity-backlog}
Votes: G votes

Relatiouship triple
(NP1, VP NP2

mmmmmmmmm -
(::__“; Extract bug t
classification feature }
b e o o = o o
¥
Relationship triple with
feature

(NP, VP NP features)

| ——— S :

Unlabeled relationship ! Labeled relationstip triple Relationship triple libeled :
triple { ,\ﬁ) vp\n fortures labeh by a trainer
(NP, VP NP features,?)y f§§ 0 o7 DV ACRUISSIRCH - 0p vp NP features,abel) | |
T T T T T T v wpsps———
v T eamnine - T
]&"j(‘m"fg E Exiracta triple |
{200 mimag (:;'_'"__'_jé with a tigh i
confidence level i
Trained SYM e e
classifier A
%
SVM classifier
sfier itenations
B Classification
k4
S -
" Gapt Software bu’g)
L database knowledge graph

s 2

FIG. 3

U.S. Patent Jul. 12, 2022 Sheet 3 of 3 US 11,386,136 B2

(GET_FROM_SUBMIT

2N (L: Mixed Active Content

‘v;-éiom‘,auo(\

 Bug 1112889

e —] with
_ CSP_Violation ST
e T . Firefox

§ g
_'312
\\A/ “ontinme_bution

FIG. 4

US 11,386,136 B2

1
AUTOMATIC CONSTRUCTION METHOD
OF SOFTWARE BUG KNOWLEDGE GRAPH

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a National Stage Application, filed under 35
U.S.C. 371, of International Patent Application No. PCT/
CN2018/104155, filed on Sep. 5, 2018, which claims pri-
ority to Chinese patent application No. 201810047681.5
filed on Jan. 12, 2018, contents of both of which are
incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present disclosure belongs to the field of software
maintenance, and particularly relates to an automatic con-
struction method of a software bug knowledge graph.

BACKGROUND

Software developers and maintainers usually need to use
some websites such as Bugzilla that contain bug libraries to
search for bug related information to solve bug problems
they encounter. However, most of these websites adopt a
searching method based on the traditional relationship data-
base. Although the search results contain a lot of information
and properties of bugs in most cases, the relationship
between bugs is not particularly clear. In addition, when a
searcher searches by using keywords, the website adopts
one-by-one keyword matching, which makes the search
results inaccurate; and when the searcher enters fewer or
more keywords, two extreme cases will exist: (1) the search
results are not only large in number and low in relevance, but
also not sorted according to the similarity after matching,
which makes the searcher spend a lot of time in browsing
and filtering information; (2) the number of returned results
is very small or no results are returned, and the information
returned is not really relevant. These search results make it
difficult for searchers to find the information they really
need, which takes much time and effort.

Before the present disclosure, a lot of achievements have
been made in the research of knowledge graph at present,
some open knowledge graphs are formed, and in particular,
the construction of domain-specific knowledge graphs
attracts attention of many people. However, the research on
the construction of domain-specific knowledge graphs for
software bugs is still in the initial stage. In addition, natural
language processing is used a lot in the construction of
domain-specific knowledge graphs for other domains, but
rarely used for the bug domain. The data source of the
existing bug library is of high quality. The information of the
bugs is processed through natural language, and then the
relationship between the bugs is established in the form of
a knowledge graph, which can improve the efficiency of
software developers and maintainers in solving bugs.

SUMMARY

The present disclosure aims to overcome the above-
mentioned defects and develop an automatic construction
method of a software bug knowledge graph.

The technical methods of the present disclosure are
described below.

The automatic construction method of a software bug
knowledge graph includes the following steps.

10

15

20

25

30

35

40

45

50

55

60

65

2

(1) Bug information in a related bug library is scraped; a
BuglD, bug description information, and four main proper-
ties of platform, product, component and status in a bug
report are scraped, and natural language processing is per-
formed on the scraped bug description information, where
the natural language processing mainly includes steps of
word segmentation and part-of-speech tagging.

(2) A noun phrase (NP), a verb phrase (VP), and a verb
phrase with an open clausal complement (VVP) are identi-
fied through regular expressions for phrase identification and
according to part-of-speech tags of words in a sentence
subjected to natural language processing.

(3) Dependency syntax parsing is performed on bug
description information to find out a dependency relation-
ship between specific “dependent” and “dominant” words,
and a grammatical structure in a bug description sentence is
extracted.

(4) A relationship triple, that is, (NP1, VP, NP2), of the
bug description information is constructed according to the
dependency relationship between words and based on the
NP and the VP which are extracted in step (2), where the bug
description sentence usually includes more than one rela-
tionship triple.

(5) The BugID in the bug information scraped in step (1)
is added to supplement the relationship triple of the bug
description information extracted in step (4), so as to gen-
erate a relationship quadruple, that is, (BuglD, NP1, VP,
NP2), of a bug.

(6) Property X of the bug collected in step (1) is used to
form a property triple of the bug, where the property triple
is (BuglD, property, X), the property triple is used for further
description of the bug information and is prepared for
subsequent construction of a software bug knowledge graph.

(7) A domain feature for bug classification is extracted
according to the extracted property triple, and the domain
feature is used to promote a learning and training process of
a classifier in a form of (BugID, NP1, VP, NP2, features).

(8) The learning and training process is performed with a
semi-supervised support vector machine (SVM) classifier by
using the extracted domain feature, and domain classifica-
tion is performed for the bug.

(9) After the bug is labeled by the classifier, data of each
type of labeled bug is stored in a visual database and the
software bug knowledge graph is generated.

The present disclosure has following advantages and
effects: bug description is analyzed from the perspective of
natural language processing, software maintainers are pro-
vided with simpler and more accurate bug information and
the most likely domain classification of the bug, which helps
software developers and maintainers to more intuitively,
quickly, and accurately understand the bug information and
the domain knowledge of the bug, and greatly improve
efficiency of the software developers and maintainers. The
software bug knowledge graph is finally implemented, and
an association relationship between bugs is established.
When the searcher searches for related bug information,
other bug information related to the bug is provided, and
thereby the search efficiency is greatly improved.

The method also has the following advantages.

(1) In the method, the relationship triple is extracted from
the bug description information, which can not only con-
catenate the relationships between the bugs, but also enable
the software maintainer to quickly understand the bug
information and the domain knowledge of the bug. When the
relationship triple of the bug is extracted, the appropriate

US 11,386,136 B2

3

word-to-word dependency relationship is selected to make
the obtained relationship triple more accurate, and redun-
dancy and noise are reduced.

(2) In the method, according to the description sentence of
the bug, the domain feature of the bug is extracted through
three steps of feature extraction, feature construction and
feature selection.

(3) In the method, a semi-supervised learning classifica-
tion method is adopted. Through the extracted domain
feature of the bug, training and learning are performed on
the relationship triple of the bug, and through iterations, the
quality of classification is improved and automatic classifi-
cation of the bug is achieved.

(4) In the method, the data on Bugzilla is analyzed. The
quality of the data source is higher, and the data is used to
construct a software bug knowledge graph. The graphs helps
software developers and maintainers to understand the bug
information and the domain knowledge of the bug more
intuitively, quickly and accurately, so as to solve the corre-
sponding bug.

At present, the semi-supervised learning classifier is a
commonly used classifier learning method, but this semi-
supervised mode still requires a small amount of manual
labeling, the classification effect is still not ideal, and some
triple classification results with redundancy and high noise
may be generated. Therefore, before the classifier learning is
performed, the classification feature of the bug domain is
deliberately extracted by analyzing the related domain
knowledge of the bug, helping in the training and learning
of'the classifier to get a better classifier. The earliest concept
of a knowledge graph is a semantic network, and then the
philosophy concept “ontology” is introduced into the
domain of artificial intelligence to characterize knowledge.
Finally, thanks to the development of the web, the knowl-
edge graph is developed rapidly. The knowledge graph is a
relationship network obtained by connecting all different
kinds of information together, provides the ability to analyze
problems from the perspective of “relationships”, and is the
most effective way to express relationships. The goal of the
automatic construction method of the software bug knowl-
edge graph is to analyze the bug description information
from a semantic perspective, and automatically classify bugs
based on the extracted bug domain features, so as to provide
software maintainers with more intuitive bug results. That is,
when software developers and maintainers search for the
bug problems, keyword searching can be used to give
quicker and accurate related information about the bug, as
well as association of the bug with other bugs and domain
knowledge.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic flowchart of the present disclosure;

FIG. 2 is a screenshot of report information of bug915603
of the present disclosure;

FIG. 3 is a schematic diagram of a classification training
and learning process of an SVM classifier of the present
disclosure; and

FIG. 4 is an example diagram of a knowledge graph of
bug915603 and bugl112889 generated in the present dis-
closure.

15

40

45

55

60

4
DETAILED DESCRIPTION

The technical idea of the present disclosure is described
below.

The method mainly includes two parts. Firstly, the first
part is the extraction of the relationship triple of a bug;
secondly, a part is the domain classification of the bug.
Specifically, firstly the bug-related information in the bug
library is collected and the processing is focused on the
description information of the bug. Verb phrases and noun
phrases of the description sentence are obtained through the
natural language processing technique, and then according
to the dependency relationship between the words related to
the bug information, the relationship triple of the bug is
obtained. One or more domain features of the bug are
extracted, and a semi-supervised classifier is subjected to
training and learning to finally make the classifier automati-
cally classify unlabeled triples. Then, all the classified
relationship triples are stored in a graph database to con-
struct the software bug knowledge graph.

In the present disclosure, the existing high-quality struc-
tured data is used and the software bug domain is focused on
to carry out the following work from the perspectives of
natural language processing, bug domain feature extraction,
and automatic domain classification.

The present disclosure is explained in detail below.

As shown in FIG. 1, the process includes the steps
described below.

In step (1), structuration processing is performed on a bug
report (an information table of historically submitted bug
reports as shown in Table 1, which records the historically
submitted bugs and property information thereot) collected
in a bug library. The information such as BugID, bug
description information, platform, product, component and
status is extracted and saved in the required file format for
processing the data later. The natural language processing
technology is used. Here the Stanford coreNLP tool is used,
and the processing includes steps of word segmentation and
part-of-speech tagging.

TABLE 1

Example of bug data

Bug ID Bug description information Status Product Component

915603 Firefox ignores click on Continue UNCO Core DOM:
button with Mixed Active Security
Content block on GET
form submit

944414 xul <browser> element should UNCO Core DOM:
not care for x-frame-options Security

1025582 CORS request intermittently UNCO Core DOM:
fails after refreshing page rapidly Security

1112889 Firefox reports a CSP violation UNCO Core DOM:
when using the “onload” attribute Security
on a div

1221047 Version 41.0.2 on Win requires UNCO Core DOM:
Access-Control-Allow-Origin Security
for the same domain

1422284 CSP upgrade insecure requests UNCO Core DOM:
follow through to new Security
(insecured) domains

1423974 Referrer-Policy is not respected ~ UNCO Core DOM:
inside iframes Security

1330795 Basic HTTP auth fails on Linksys UNCO Core DOM:
WRT120N-Upgrade- Security

Insecure-Requests related?

US 11,386,136 B2

5
TABLE 1-continued

6
TABLE 3

Example of bug data

Dependency relationship

Dependency Dependent Dominant Semantic relationship
Bug ID Bug description information Status Product Component 5 relationship word word between words
1329198 Issue with Google Chrome CSP UNCO Core DOM: nsubj fails-4 CORS-1 “CORS-1” is nominal
evaluation of child-src Security subject of “fails-4”
1343950 Content Security Policy (CSP) ~ UNCO Core DOM: xcomp refreshing-6 request-2 “Refreshing-6” is open
implement unsafe-hashed- Security clausal complement
attributes)) of “Requesr-2”)
10 dobj fails-4, page-7 request-2, “fails-4” is direct object
refreshing-6 of “request-2”; “page-7
is direct object of
In step (2), the verb phrases (VP) and noun phrases (NP) “refreshing-6”
in the description sentence of the bug are extracted. Here the advmod Intermittently-3 request-2, “intermittently-3” is
verb phrases (VP) and noun phrases (NP) are mainly iden- rapidly-8 refreshing-6 r;zg?gz?zmgi;’fyr_%,,
tified by using the regular expressions in Table 2. In the 13 is “refreshing-6”
table, (MD) is a modal verb; and (VB.) represents different adverb modifier
types of verbs, for example, VB represents the basic form of
a verb, VBG represents th? gemnd or present participle, In step (5), the relationship triples of the bug description
VBN represents the past participle of a verb, VBP represents 5o information extracted in step (4) are concatenated, and the
the nor}-thlrd person singular of a verb, and VEZ represents BuglD in the bug information scraped in step (1) is added.
the third person singular of a verb. (NN.*) represents Finally a quadruple, that is, (BugID, NP, VP, NP) about the
d}fferent types O.f nouns, for example, NN represents a bug is thus generated. The main purpose of introducing
singular or material noun, NNS represents the noun plural, BuglID here is to concatenate multiple relationship triples of
NNP represents the noun singular, and NNPS Iepresents a o5 the same sentence on one hand and to locate the obtained
plural proper noun; (JI) represents an adjective; (RB) is an bug information on the other hand.
adverb; (DT) represents a.deﬁ.nite art.icle; .(IN*) represe;nts In step (6), the property X of the bug scraped in step (1)
any p.reposmon or subordlnatlpg COHJ}lnCtIPHQ “VVP” is a is extracted, such as the product and component in Table 1,
VP with an open clause; (CC) is a conjunction; and (CD) is to form a triple (BugID, product, X) as a further supplement
a numeral and (TO) is used as a preposition or infinitive 30 to the bug information, and as preparation for the construc-
label. tion of a software bug knowledge graph. A bug has some
very important properties to help software maintainers to
TABLE 2 resolve the bug, so the properties need to be added to the
. — knowledge graph as a relationship of the bug.
Regular expressions for identification of verb and noun phrases 35 In step (7), according to the preViously extracted relation-
Name Regular expression ship triple, a domain feature fqr the.: bug classification is
extracted through feature engineering, and thereby the
Noun phrase E(PEODSS(DCT];;ES\?]; SJ‘ Qggﬁz;(xfg‘VBG)*(NN-*)* - domain feature is used to promote the following training and
(VBD\VBG)*(NN.*)*(POS)*(Cb)*(NN.*)* . leamipg process of the classifier. A form of the extracted
Verb phrase (MD)*(VB.*) + (CD)*(J1)*(RB)*(J1)*(VB.*)2(DT)? 40 domain feature is (BugID, NPl, VP, NP2, features). Table 4
(IN*ITO*) + (MD)*(VB.*) + (I)*(RB)*(I1)*(VB.*)? lists the conceptual features in the feature engineering to
E?J?g:gig%?&éhf?l*&g;)&B Y 4 reflect the quality of the extracted relationship triple. The
Noun phrase (MDY*(VB.*) + (J7)*(RB)* (J1)*(VB.*)2(DT)2(TO%)| + TF-IDF value is calculated by the fqllowmg formula (1), for
with a (VB) + (MD)*(VB.*¥) + (I1)*(RB)*(IJ)* the term frequency (TF) part, n, ;18 the number of occur-
complement (VB.*)2(DT)2(IN*) + (VBG) + 45 rences of the word t, in the file dj, and the denominator is a
sum of the numbers of occurrences of all words in the file d,.
o For the inverse document frequency (IDF) part, D is the total
In step (3), dependency syntax parsing is performed on amount of bug information, and the denominator d, is the
the bug description information. Relationship triples are number of files including the keyword t,
extracted mainly based on 49 types of dependency relation- 5o '
ships defined by grammatical relationships. Table 3 shows
the grammatical structure of the sentence “CORS request i j D (L
. . . . e TF — IDFypoigm, ; = TF # IDF = *logz(—]
intermittently fails after refreshing page rapidly.” Other b LY a;;
major dependency relationships include: csubjpass repre-
senting the master-slave passive relationship; npadvmod 55
representing the noun phrase as an adverb modifier; and
parataxis representing the parallel relationship. TABLE 4
In step (4)’ accor(.iing to .the. deper}dency relationShip Conceptual feature for classification of bug relationship triples
between words, and in combination with the noun phrase
(NP) and verb phrase (VP) obtained in step (3), a relation- Name Annotation
Ship triple (NP, VP, NP) of the bUg description sentence is subj_tfidf tf-idf value of the subject in the bug report
constructed. A relationship triple (CORS-1, request-2, fails- in the entire bug library
4) is obtained from nsubj (fails-4, CORS-1) and dobj(fails-4, obj_tfidf th-idf value of the object in the bug report
. . . . in the entire bug library
request-2) in Table 3. The number of relationship triples of ¢s sum thdf Sum of tf-idf values of the subject and the

each bug description sentence is usually more than one.
These triples may be concatenated by the BugID.

object in the entire bug library

US 11,386,136 B2

7
TABLE 4-continued

Conceptual feature for classification of bug relationship triples

Name Annotation

average_tfidf The average tf-idf value of the subject and
the object in the entire bug library
Proportion of keywords in the subject in a
bug domain

Proportion of keywords in the object in the
bug domain

Proportion of keywords in the subject and
object in the bug domain

% domain_key_word_subj
% domain_key_word_obj

% domain_key_word_suobj

In step (8), a semi-supervised support vector machine
(SVM) classifier is adopted for learning and training by
using the extracted bug domain feature to achieve automatic
domain classification of the bug. The specific steps are
shown in FIG. 3 and include: a part of labeled relationship
triples are used as training data to train the classifier sub-
jected to training and learning; then the unlabeled relation-
ship triples are labeled, namely, classified by the trained
classifier, and a confidence level is given for each labeling
to evaluate the probability that the labeling is correct; then,
the labeled relationship triples with a higher confidence level
are added to the classifier as new training data to promote the
quality of the learning; and finally, the iteration is completed,
and unlabeled relationship triples are put into the classifier
for labeling. The classes mainly include: 1. function prob-
lems (F-Function); 2. interface problems (I-interface); 3.
logic problems (L-Logic); 4. computation problems
(C-Computation); 5. data problem (A-Assignment); 6. user
interface problem (U-User interface); 7. document problem
(D-Documentation); 8. performance problem (P-Perfor-
mance); 9. configuration problem (B-Build, package,
merge); 10. standard problem (N-Norms); 11. environmental
problem (E-Environments); 12. compatibility problem; 13
other problems (O-Others). Finally (BugID, NP1, VP, NP2,
features, label) is formed.

In step (9), after labeling by the classifier is completed,
data of each type of labeled bug is stored in a visual graph
database to generate the software bug knowledge graph.
FIG. 4 is a screenshot of a generated software bug knowl-
edge graph about two bugs including bug915603 and
bug1112889. It can be seen from FIG. 4 that these two bugs
belong to a same component and product, and have a same
status; the domain classes of these two bugs belong to the
class of function (F) problem, and through the associated
bug description information, the specific content of the bug
can be intuitively understood, so that software developers
and maintainers can understand the bug information and the
domain knowledge thereof more intuitively, quickly and
accurately.

10

15

20

25

30

35

40

45

50

8

What is claimed is:
1. An automatic construction method of a software bug

knowledge graph, comprising:

(1) scraping bug information in a related bug library,
scraping a BuglID, bug description information, and
four main properties of platform, product, component
and status in a bug report, and performing natural
language processing, wherein the natural language pro-
cessing mainly comprises steps of word segmentation
and part-of-speech tagging;

(2) identifying a noun phrase (NP), a verb phrase (VP),
and a verb phrase with an open clausal complement
(VVP) through regular expressions for phrase identifi-
cation and according to part-of-speech tags of words in
a sentence subjected to natural language processing;

(3) performing dependency syntax parsing on the bug
description information to find out a dependency rela-
tionship between specific “dependent” and “dominant”
words, and extracting a grammatical structure in a bug
description sentence;

(4) constructing a relationship triple of the bug description
information according to the dependency relationship
between words and based on the NP and the VP
extracted in step (2), wherein the constructed relation-
ship triple is (NP1, VP, NP2), the bug description
sentence usually comprises more than one relationship
triple;

(5) adding the BugID in the bug information scraped in
step (1) to supplement the relationship triple of the bug
description information extracted in step (4), so as to
generate a relationship quadruple of a bug, wherein the
generated relationship quadruple is (BugID, NP1, VP,
NP2);

(6) using property X of the bug collected in step (1) to
form a property triple of the bug, wherein the property
triple is (BuglD, property, X), the property triple is used
for further description of the bug information and is
prepared for subsequent construction of a software bug
knowledge graph;

(7) extracting a domain feature for bug classification
according to the property triple, and using the domain
feature to promote a learning and training process of a
classifier in a form of (BuglID, NP1, VP, NP2, features);

(8) performing the learning and training process with a
semi-supervised support vector machine (SVM) clas-
sifier by using the extracted domain feature, and per-
forming domain classification for the bug; and,

(9) after labeling by the classifier, storing data of the
labeled bug of each type in a visual database and
generating the software bug knowledge graph.

#* #* #* #* #*

