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A method for identifying a bridge node in a network using a
processor and memory unit in a specially programmed spe-
cial purpose-purpose computer including the steps of, for
each node in a plurality of nodes in the network: determining
a global metric proportional to total traffic flow in the network
and through the node; determining a local metric proportional
to traffic flow between the node and each second node in the
network connected to the node and traffic flow between each
second node and each third node in the network connected to
a second node; determining a second local metric propor-
tional to the respective traffic flows between each node and
each second node; and calculating a respective combination
ofthe global metric and the first and second local metrics; and
selecting, a bridge node from among the plurality of nodes
based on the respective combinations.
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BRIDGING CENTRALITY: A CONCEPT AND
FORMULA TO IDENTIFY BRIDGING NODES
IN SCALE-FREE NETWORKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit under 35 U.S.C.
§119(e) of U.S. Provisional Application No. 60/802,228,
filed May 19, 2006, which application is incorporated herein
by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND DEVELOPMENT

The U.S. Government has a paid-up license in this inven-
tion and the right in limited circumstances to require the
patent owner to license others on reasonable terms as pro-
vided for by the terms of Grant No. 1 P20 GM067650-01A1
awarded by the National Institutes of Health (NIH).

FIELD OF THE INVENTION

The present invention generally relates to identifying
nodes in a network that are important for traffic flow in the
network. In particular, the present invention relates to identi-
fying bridging nodes that combine high global and local
importance with respect to traffic flow in the network.

BACKGROUND OF THE INVENTION

Many real world systems, e.g., internet, World Wide Web
(WWW), social systems, biological systems, etc., can be
described as complex networks, which are structured as a set
of nodes and a set of edges connecting the nodes. Scale-free
network is the most popular and emerging form of network in
these real world network systems. Most of these real world
networks have been proved to follow some topological sta-
tistical features, i.e., features of scale-free network, such as
power law degree distribution, small world property, and high
modularity. Power law degree distribution depicts the prob-
ability of finding a highly connected node decreases expo-
nentially with its own degree, which is the number of edges
incident on the node. In other words, there are many low
degree nodes, and only a small number of nodes have high
degree. The second phenomenon, small world property,
describes that the average distance between nodes in a net-
work is relatively shorter than other network types, e.g., ran-
dom networks of the same size. Namely, any node can be
reached within small number of consecutive edges from a
node in a network. A module refers to a densely connected,
functionally or physically, group of nodes in a network. For
the last distinct and the most interesting property, these real
world networks have high modularity which indicates that
high clustering is one of dominating characteristics of these
networks.

Over the past few years, empirical and theoretical studies
of networks have been one of the most popular subjects of
recent research in many areas including technological, social,
and biological fields. Network theories have been applied
with good success to these real world systems, and many
centrality indices, measurements of the importance of the
components in a network, have been introduced. While these
centrality indices have proved that they made outstanding
achievements in the analysis and understanding of the roles of
nodes in a network, the majority of these existing centrality
indices focus only on the extent how much nodes are well
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located on central positions or play central roles from the
stand point of topology and information flow. These existing
centrality measures can not help being considerably domi-
nated by the nodes’ degree due to their nature of the comput-
ing components’ importance. Even though these approaches
are very good at identifying central components, 1.e., central
components from any centrality viewpoint, of'a network or of
a module, they concentrate only on central components and
overlook other essential topological aspects in networks.

In this research, the focus of the network analysis is moved
from the directions of identifying central nodes to another
entirely new, fresh, and important direction. From our deeper
observation of the high modularity property of scale free
networks, we claim that there should be “bridging” nodes that
are located between modules, and we found that there exist
“bridging” nodes in real world scale-free networks due to
their high modularity phenomenon. So, we also claim that
these bridging nodes, which bridge densely connected
regions, should be attractive and important essential compo-
nents in a network. We introduce a novel centrality metric,
bridging centrality that successfully identifies the bridging
nodes located between densely connected regions, i.e., mod-
ules, using a high modularity or high clustering property
which is one of the most important properties of scale-free
networks. Experiments on several real world network sys-
tems are performed to demonstrate the effectiveness of our
metric.

Bridging centrality has many potential applications in sev-
eral areas. First, it can be used to break up modules in a
network for clustering purpose. Functional modules or physi-
cal modules in biological networks or sub community struc-
tures in social and technological networks can be detected
using the bridging nodes chosen by bridging centrality. Sec-
ond, it also can be used to identify the most critical points
interrupting the information flow in a network for network
protection and robustness improvement purposes for net-
works. Third, in biological applications, the bridging central-
ity can be used to locate key proteins, which are the connect-
ing nodes among functional modules.

SUMMARY OF THE INVENTION

The present invention broadly comprises a methed for
identifying a bridge node in a network, including the steps of:
determining, for each first node in a plurality of nodes in the
network, using a processor in a specially programmed special
purpose-purpose computer, a global metric proportional to
total traffic flow in the network and traffic flow through each
first node; determining, for each first node using the proces-
sor, a first local metric proportional to traffic flow between
each first node and each second node in the network con-
nected to the first node and traffic flow between each second
node and each third node in the network connected to at least
one of the second nodes, determining, for each first node
using the processor, a second local metric proportional to the
largest and second largest traffic flows from among the
respective traffic flows between each first node and each
second node; calculating, for each first node using the pro-
cessor and a memory element in the general-purpose com-
puter, a combination of the global metric and the first and
second local metrics; and selecting, using the processor and
the memory element, a bridge node from among the plurality
of nodes based on the combinations.

In some aspects, the global metric includes the traffic flow
through each first node divided by the total traffic flow, a
denominator for the first focal metric includes the traffic flow
between each first node and each second node, the second
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local metricincludes the second largest traffic flow divided by
the largest traffic flow, calculating a respective combination
includes calculating a respective product of the global metric
and the first and second local metrics for each first node, and
selecting a bridge node includes selecting a first node with a
highest respective product.

The present invention also broadly comprises a method for
identifying a bridge node in a network, including the steps of:
determining, for each first node in the network, using a pro-
cessor in a specially programmed special purpose-purpose
computer, a global metric proportional to total traffic flow in
the network and traffic flow through each first node; deter-
mining, for each first node using the processor, a local metric
proportional to traffic between each first node and each sec-
ond node in the network connected to the first node; calculat-
ing, for each first node using the processor and a memory
element in the general-purpose computer, a combination of
the global metric and the local metric; and selecting, using the
processor and the memory element, a bridge node from
among the plurality of nodes based on the combinations.

In some aspects, determining a local metric comprises:
determining, for each first node using the processor, a first
local sub-metric proportional to the traffic flow between each
first node and each second node and traffic flow between each
second node and each third node in the network connected to
at least one of the each second node; and determining, for
each first node using the processor, a second local sub-metric
proportional to the largest and second largest traffic flows
from among the respective traffic flows between each first
node and each second node. In some aspects, the global
metric includes the traffic flow through each first node divided
by the total traffic flow, a denominator for the first local,
sub-metric includes the traffic flow between each first node
and each second node, the second local metric includes the
second largest traffic flow divided by the largest traffic flow,
calculating a respective combination includes calculating a
respective product of the global metric and the first and sec-
ond local sub-metrics for each first node, and selecting a
bridge node includes selecting first node with a highest
respective product.

The present invention further broadly comprises a method
for identifying a bridge node in a network, including the steps
of: determining, for each first node in the network, using a
processor in a specially programmed special purpose-pur-
pose computer, a global metric proportional to a total number
of paths connecting node pairs in said network and a total
number of said paths connected to said each first node; deter-
mining, for each first node using the processor, a local metric
proportional to traffic between each first node and each sec-
ond node in the network connected to each first node; calcu-
lating, for each first node using the processor and a memory
element in the general-purpose computer, a combination of
the global metric and the local metric; and selecting, using the
processor and the memory element, a bridge node from
among the plurality of nodes based on the combinations.

In some aspects, determining a local metric comprises:
determining, for each first node using the processor, a first
local sub-metric proportional to the traffic flow between each
first node and each second node and traffic flow between each
second node and each third node in the network connected to
at least one of the each second node; and determining, for
each first node using the processor, a second local sub-metric
proportional to the largest and second largest traffic flows
from among the respective traffic flows between each first
node and each second node. In some aspects, the global
metric includes the total number of the paths connected to
each first node divided by the total number of the paths
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connecting node pairs in the network, a denominator for the
first local sub-metric includes the traffic flow between each
first node and each second node, the second local metric
includes the second largest traftic flow divided by the largest
traffic flow, calculating a respective combination includes
calculating a respective product of the global metric and the
first and second local sub-metrics for each first node, and
selecting a bridge node includes selecting the first node with
a highest respective product.

The present invention also broadly comprises an apparatus
for identifying a bridge node in a network.

It is an object of the present invention to provide a method
and system for identifying bridging nodes in a network.

It is an object of the present invention to provide a method
and system for identifying nodes capable of disrupting traffic
flow in a network while maintaining structural integrity ofthe
network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an electrical network model;

FIG. 2 illustrates a small synthetic network example;

FIG. 3 shows results for the use of a present method or
apparatus on a synthetic network consisting of 158 nodes and
362 edges;

FIG. 4 illustrates a yeast metabolic network with 359 nodes
and 435 edges;

FIGS. 5A and 5B show the results for the use of a present
invention method or apparatus with the Les Miserable Char-
acter Network and Physics Collaboration Network, respec-
tively;

FIGS. 6A and 6B show the results for the use of a present
invention method or apparatus with the AT&T Web Network
and RPI Web Network, respectively;

FIGS. 7A and 7B show the results for the use of a present
invention method or apparatus with the Cardiac Arrest Net-
work and Yeast Metabolic Network, respectively;

FIGS. 8A-8F assesses disruption and structural integrity
associated with use of a present invention method or appara-
tus;

FIG. 9 illustrates examples of modular networks that are
composed of two modules;

FIG. 10 illustrates changes of clustering coefficients of
networks that are successively reduced by one node with the
highest bridging score;

FIG. 11 is a schematic of undirected graph network model
for the p53 protein with 82 nodes and 106 edges; and,

FIG. 12 is a schematic block diagram of a present invention
apparatus.

DETAILED DESCRIPTION OF THE INVENTION

Terminology and Representation

Real world systems can be represented using graph theo-
retic methods. The approach presented focuses on undirected
graphs. An undirected graph G=(V, E) consists of a set V of
nodes or vertices and a set E of edges, E = VxV. Anedge e(i,))
connects two nodes 1 and j, e(i,j)eE.

Anundirected graph G={(V, E)I'V is a set of nodes and E is
a set of edges. E = VxV, an edge e=(i,j) connects two nodes 1
and j, 1, j€V, eeE}. We investigated several diverse networks
ranging from simulated data, social and biological networks
to the Internet and the Worldwide Web. In the biological
examples, the nodes in the biological network’s graph repre-
sentation are the various biomolecular species whose com-
position can range from biopolymers such as proteins, DNA,
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RNA to small molecules such as lipids, sugars and metabo-
lites. The edges between the nodes represent an interaction
between the underlying molecular species. Likewise, in the
social networks, the nodes represent individuals and the
edges are social or collaborative relationships. For the Inter-
net and World Wide Web, the nodes are computers/devices
and Web pages, respectively; the edges represent network
connectivity and links, respectively. Such undirected graphs
have been widely employed in network modeling of these
systems.

Network Properties

The neighbors N(v) of node v are defined to be the set of
directly connected nodes to node v. The degree d(v) of anode
v is the number of the nodes directly connected to node v, i.e.,
cardinality of N(v). A path is defined as a sequence of nodes
(n,, . .., n,) such that from each of its nodes there is an edge
to the successor node. The path length is the number of edges
in its node sequence. A shortest path between two nodes, iand
j, 1s a minimal length path between them. The distance
between two nodes, 1 and j, is the length of its shortest path.
The clustering coefficient, C,, of node v measures the extent
of'the inter-connectivity between the neighbors of node vand
is the ratio of the number of edges between the nodes in the
direct neighborhood to the number of edges that could pos-
sibly exist among them:

_ 2|Ui,je NG e(. j)

=2 eli. P
&= ddm-n B IeE

The clustering coefficient of a graph is the average of the
clustering coefficients of all nodes in the graph.

The first neighbor subgraph S, (v)={(V,,E)IV, is the set of
nodes in the direct neighbors of node v, E| is the set of edges,
E, =V ,xV,, an edge e=(i,j) connects two nodes i and j, i,
jeV,, eeB, ), the subgraph I in FIG. 1. The second neighbor
subgraph of node v is S,(v)={(V,,B,)IV, is the set of nodes
that are located within distance 2 from node v, E, is the set of
edges, E, = V,xV,, an edge e=(i,j) connects two nodes i and
j, 1,j€V,, e€R,}, the subgraph ITin FIG. 1 which includes the
direct neighbors and the neighbors of the direct neighbors of
node v. All network figures were initially obtained using
Pajek (Batagelj, V. & Mrvar, A.)

Bridging Centrality

We define a bridging node to be a node connecting modular
regions in a graph. We here introduce a formula, termed
bridging centrality, to quantitatively measure the degree of
bridging capability of all nodes in the network. The bridging
nodes in a graph can then be identified on the basis of their
high value of bridging centrality relative to other nodes on the
same graph. To calculate the bridging centrality, we
employed a network flow model and computational approach
derived from electrical network theory Newman, M. E. &
Girvan, M. Finding and evaluating community structure in
networks (Phys Rev E Stat Nonlin Soft Matter Phys 69,
026113 (2004)). Each edge was treated as a unit resistor and
the signal flow of node v is defined as the accumulated current
flow through node v between all source-sink pairs in network
G.

Definition 1: {(G,v) is the signal flow through node v
between all current source and sink pairs in network G:
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where I_(v) is the current flow through node v between a unit
current source node s and current sink t.

Definition 2: v,,,,(G,v) and },.,,+(G,v) are the highest
signal flow quantity and the second highest signal flows,
respectively, in the direct neighbors of node v:

W, (G V)=Max(¥(G,i))jeN(v) 2)
W, ocona( G v)=Second(W(G, 1)) feN(v) 3

Definition 3 The bridging centrality Cg(v) is defined by:

)

Weecond (G, V) ](‘P(Sz(v), v) - ¥(S1(v), V))

Crln) =G, ”( Byl G, ) WS1 00, )

P(8,(v),v) measures the signal flow of node v in the first
neighbor subgraph S;(v) and Y(S,(v),v) measures the signal
flow of node v in the second neighbor subgraph S,(v). The
P,,.(G,v) and . ..(G,v) are the maximum signal flow
value and the second highest signal flow value, respectively,
in the direct neighbors of node v.

Thus, bridging centrality of a node is the product of the
three terms (Equation (4)) that enable it to assess bridging.
The first term, which measures global importance of the node,
represents the fraction of all pairwise network signal flows
that pass through the node. The second term measures the
fraction of the signal that can be transmitted across the bridge
from the two ‘busiest’ neighboring regions. The third term
assesses the importance of the bridge to the local neighbor-
hood: it assesses the signal congestion at the bridge. A bridg-
ing node is a node v that has high bridging centrality value.

FIG. 2 and Table 1 (herebelow) clearly illustrate the
essence of bridging centrality. The top six high bridging score
nodes are colored. Although node A has the highest degree
and betweenness value, nodes E, B, and D have much higher
bridging centrality values since node A is located on the
center of a module and not on a bridge, which results in the
lowest bridging coefficient value. In other words, a far higher
number of shortest paths go through node A than the other
three nodes, but nodes E, B, and D position on bridges much
better. So, nodes E, B, and D have higher bridging centrality
values since they are on the bridges between modules which
leads much higher bridging coefficient values than node A.
Betweenness centrality decides only the extent of how impor-
tant the node of interest is from information flow standpoint,
and it does not consider the topological location of the node.
On the other hand, nodes B and D have the same bridging
coefficient value with node E, but nodes B and D have much
less betweenness centrality values since far more number of
shortest paths passes through node E than through nodes B
and D. Even though nodes E, B, and D are located on similar
local topological positions, i.e., similar local topological sur-
roundings, node E is taking a much more important location
than nodes B and D in the information flow viewpoint. Bridg-
ing coefficient measures only the extent of how well the node
is located between highly connected regions, and it does not
deliberate the node’s importance from information flow
standpoint. Without a doubt, it can be figured out that node E
is taking a better bridging position than nodes B and D are in
FIG. 2.
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Bridging nodes should be positioned between modules and
also located on important positions in information flow stand-
point. So, bridging centrality combines these two measure-
ments, betweenness centrality and bridging coefficient, since
none of these two indices can differentiate the bridging nodes
alone, as we saw in the above. So bridging centrality com-
bines global and local features, betweenness centrality and
bridging coefficient respectively, of the node not focusing
only on onetopological factor like other centrality indices do,
and discriminates the bridging nodes which are located on the
critical positions for information flow viewpoint and also are
positioned on the bridges.

TABLE 1

Top six centrality values of FIG. 2, including Degree,
Betweenness (Cp), and bridging centrality (Cp).

Node Degree Cp Cz
E 2 0.013737 0.076573
B 2 0.007778 0.010674
D 2 0.007778 0.010674
A 4 0.016364 0.007412
7 3 0.009293 0.003098
F 4 0.013030 0.003066
Results

The focus of this research and performance analysis is
mainly on the top 25% bridging centrality score components
in all examples because their significance and interest are
rapidly reduced below the top 25%. Furthermore, bridging
centrality values and the range of the bridging nodes can be
arbitrary according to the network topology dealt with.
Empirical studies on several real world network systems have
led to defining “bridging nodes” as the top 25%.

Application on Simulated Data

To obtain a preliminary assessment of the underlying net-
work characteristics identified by Bridging Centrality, we
applied the metric to a synthetic network consisting of 158
nodes and 362 edges shown in FIG. 3. The network was
created by joining 3 separate synthetic networks contains key
elements such as hub nodes, peripheral nodes, cycles with
known bridges. The overall size was kept small so that the any
patterns present could be easily detected by visual inspection.
In FIG. 3, we have highlighted the nodes with the highest
0-5" percentile of values for the Bridging Centrality are high-
lighted in red circles; the nodes with the lowest values of
Bridging Centrality are the 85%-100” percentiles are high-
lighted in white circles. The color map for the percentile
values is shown in the Figure. Visual inspection of the syn-
thetic network reveals that the highest values of Bridging
Centrality occur in the nodes that connect the modules and
highly connected parts of the network. Upon closer inspec-
tion, it was found that the two known bridging nodes, Bl and
B2, connecting Modules 2 and 3 were in the 8” and 10%
percentiles of Bridging Centrality. The existence of an alter-
native shorter major bridge between Modules 2 and 3 pushed
these two secondary bridges out of top 5% percentile. Two
unknown bridging nodes emerged within Module 1: these
were located between highly modular sub regions of Module
1 and found on inspection to be effective local bridges.

Application on the p53 Network

In the next step, we extended the promising results
obtained to graph model of the p53 network. The p53 protein
is a critical tumor suppressor molecule and because it is often
mutated in many human tumors, its interactions could poten-
tially provide targets for anti-cancer drugs.

20

25

30

35

40

45

50

55

60

65

8

Next, we assessed the biological characteristics and drug-
gability of EIF4E, MDM2, SOS, GRB2, H-Ras, N-Ras,
CDK6 and TGFB1, which were identified as having the high-
est Bridging Centrality values in the p53 network. The EIF4E
gene codes for a translation initiation factor and has been
directly implicated in the action of rapamycin, the potent
immunosuppressant and potential anti-neoplastic agent
{Sun, 2005 #31; Wendel, 2004 #32; Huang, 2003 #33}. The
levels of EIF4E are a surrogate marker for relapse of head and
neck squamous cell cancers {Nathan, 2001 #41; Nathan,
1997 #43} and antisense RNA targeting of FIF4E has been
shown to reduce tumorigenic potential {DeFatta, 2000 #34}.
Ribavirin and its derivatives bind to EIF4E and inhibit its
ability to bind 7-methyl guanosine cap at the 5'end of mRNAs
of oncogenes, such as cyclin D1, VEGF and ornithine decar-
boxylase {Kentsis, 2004 #84}. Ribavirin has been shown to
be specific, non-toxic and non-mutagenic {Kentsis, 2004
#34}.

Several drug candidates including, 2,5-bis(5-hydroxym-
ethyl-2-thienyl) furan and the nutlins block the p53-MDM?2
binding cleft, and subsequently interrupts the ability of
MDM?2 to suppress the tumor suppressor activity of p53,
{Vassilev, 2004 #82; Issaeva, 2004 #83}. The nutlin inhibi-
tors induce apoptosis in samples chronic lymphocytic leuke-
mia and myeloma patients {Kojima, 2006 #78; Coll-Mulet,
2006 #80; Stuhmer, 2006 #81}. The non-leukemic cells
showed lower sensitivity to nutlin-induced apoptosis {Coll-
Mulet, 2006 #80}.

The GRB2 gene product is known to be a signal transducer
for several oncogenes. It is an adaptor protein that interacts
with the Ber portion of the Ber-Abl fusion protein, which is
produced as a result of the chromosomal translocation in
myelogenous leukemia {Feller, 2003 #22}. Blockade of
GRB2 binding to SoS (a GDP releasing protein) abrogates the
activation of the Ras, a major driving force of the central
mitogenic (MAP kinase) pathway.

H-Ras and N-Ras are isoforms of the Ras oncogene and the
anti-cholesterol agent, simvastatin, down-regulates H-ras and
RNA interference of N-ras inhibits cell growth in small cell
lung cancers {Khanzada, 2006 #44}; H-ras over-expression
confers resistance to the anti-cancer drugs, bleomycin, cispl-
atin and adriamycin {Hamamoto, 2005 #45; Youn, 2004
#47}.

The indole-3-carbinols, (which are formed as a result of the
metabolism of phytochemicals present in cruciferous veg-
etables) cause Gl cell cycle arrest and exert strong anti-
proliferative actions in cancer cell lines that are mediated by
decreased CDK6 expression {Brandi, 2003 #26; Firestone,
2003 #27; Chinni, 2001 #29}.

TGFB1 knockout mice result in prenatal lethality, due to
improper endothelial differentiation and haematopoiesis
{Dickson, 1995 #85}. The natural inhibitor decorin
{Yamaguchi, 1990 #86} and the chimeric Fc TGPRII
{Muraoka, 2002 #87} have been used successfully studied in
animal model of tumors.

Application on the Yeast Metabolic Network

In the next step, the promising results obtained with the
simple p53 regulatory network model were extended to the
undirected yeast metabolic network. The yeast metabolic net-
work is relatively well modularized and clustered according
to their cellular functions. FI1G. 4 shows that bridging central-
ity successfully identifies the bridging nodes and the nodes
lying on the borders of modules. The nodes with the highest
0-10th percentile of values for the bridging centrality are
highlighted in black circles; the nodes with the 10th-25th
percentiles of bridging centrality are highlighted in gray
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circles. Importantly, the majority of its key bridging nodes
can be readily identified by visual inspection.

Application on Social Networks

Networks are commonly used to represent social systems
and the analysis of these social networks is important in
national security applications. Social networks are distinc-
tively different from computer and biological networks in
their clustering properties and show positive correlations
between degrees of adjacent nodes Newman, M. E. & Park, J.
Why social networks are different from other types of net-
works (Phys Rev E Stat Nonlin Soft Matter Phys 68, 036122
(2003)). We analyzed two social networks to demonstrate that
bridging centrality can be used to identify key bridging indi-
viduals in a social community.

Les Miserable Character Network: FIG. 5A illustrates the
social relationships Newman, M. E. & Girvan, M. Finding
and evaluating community structure in networks (Phys Rev E
Stat Nonlin Soft Matter Phys 69, 026113 (2004)) among the
characters in the Victor Hugo novel, Les Miserable. This
novel has numerous subplots and the resultant social network
has complex inter-connectivity among sub-communities. The
central character of the novel, Valjean had the highest bridg-
ing centrality and Javert, the police officer pursuing Valjean,
had the second highest bridging scores. Valjean and Javert are
identified as bridging nodes because they connect different
modules or sub-plots in the novel. Interestingly, Pontmercy, a
relatively minor character had 3™ highest bridging score
because this character connected the Javert, Marius and
Cosette sub-communities identified by Newman and Girvan
(Phys Rev E Stat Nonlin Soft Matter Phys 69, 026113
(2004)). Therefore, our bridging centrality metric identifies
the nodes positioned between sub-communities in a complex
social network.

Physics Collaboration Network: This social network was
constructed Park, J. & Newman, M. E. Origin of degree
correlations in the Internet and other networks (Phys Rev E
Stat Nonlin Soft Matter Phys 68, 026112 (2003)) from the
bibliography section ofa review by Newman (Newman, M. E.
J. The structure and function of complex networks. SIAM
Review 45, 167-256 (2003)). The bridging nodes (FIG. 5B)
are strategically positioned on the paths between modular
sub-communities, (Phys Rev E Stat Nonlin Soft Matter Phys
69, 026113 (2004)). The nodes corresponding to the physi-
cists, Rothman and Dodds, had the highest and 3" highest
bridging centrality values because the nodes were on the path
providing the only connection between the two large commu-
nities in the network. The nodes corresponding to the Boston
University physicists, Redner and Krapivsky, which had the
2"¢ and 4” highest bridging centrality values, were located
between the Notre Dame University and the Clarkson Uni-
versity groups.

Application on a Web Network

AT&T Web Network: This network (North, S. in Sympo-
stum on Graph Drawing GD’96 409 (Springer, Berkely,
Calif., 1996)) has low modularity, which makes it difficult to
differentiate modular regions and their connecting nodes. By
visual inspection of FIG. 6A, it is apparent that bridging
centrality successfully identified the bridging nodes in the
AT&T Web Network despite the low network modularity.

RPI Web Network: The RPI Web Network (North, S. in
Symposium on Graph Drawing GD’96 409 (Springer, Ber-
kely, Calif., 1996)) is more modular than the AT&T Web
Network example and is more typical of real world Web
networks. Visual inspection of FIG. 6B indicates that nodes
identified by bridging centrality are located on the connec-
tions between modular regions.
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Performance of Bridging Centrality on Biological Networks

High throughput assay methodologies such as microarrays
and mass spectrometry have resulted in rapid growth of bio-
logical network data sets, the analysis of which can poten-
tially yield insights into the mechanisms of human disease
and the discovery of new therapeutic interventions (Hwang,
W., Cho, Y. R., Zhang, A. & Ramanathan, M. A novel func-
tional module detection algorithm for protein-protein inter-
action networks. Algorithms Mol Biol 1, 24 (2006)). Biologi-
cal networks can be diverse in structure but in many cases,
involve ordered sequences of interactions rather than inter-
connections. The majority of proteins in a given functional
category do not have direct physical interaction with other
proteins involved in the same function category (Hwang, W.,
Cho, Y. R., Zhang, A. & Ramanathan, M. A novel functional
module detection algorithm for protein-protein interaction
networks. Algorithms Mol Biol 1, 24 (2006)).

Cardiac Arrest Network: We evaluated the performance of
bridging centrality on network model for the genes involved
in human cardiac arrest (Arking, D. E., Chugh, S. S., Chakra-
varti, A. & Spooner, P. M. Genomics in sudden cardiac death.
Circ Res 94, 712-23 (2004)). This network (FIG. 7A) is
modular and has many peripheral nodes with contains 4 major
hubs, Grb2, PP2A, PKA and PP1, that are connected by
bridges. The nodes corresponding to SRC, SHC and JAK2,
the three main bridges between the two largest modules,
GRB2 and PP2A modules, had the highest, 27¢ and 3" highest
bridging centrality values, respectively. An analysis of the
pharmacology literature was used to assess their importance
as drug targets in cardiac diseases. Isoproteronol, a § adren-
ergic receptor agonist, has been shown to attenuate phospho-
rylation of both Shc and Src proteins in cardiomyocytes (Zou,
Y. et al. Isoproterenol activates extracellular signal-regulated
protein kinases in cardiomyocytes through calcineurin. Cir-
culation 104, 102-8 (2001)). The angiotensin receptor 2, the
target of drugs such as losartan, also signals via Src and She
in cardiac fibroblasts (Yamazaki, T., Komuro, 1., Shiojima, 1.
& Yazaki, Y. The molecular mechanism of cardiac hypertro-
phy and failure. Ann N'Y Acad Sci 874, 38-48 (1999)). Jak2
activation is a key mediator of aldosterone-induced in angio-
tensin-converting enzyme expression; the latter is the target
of drugs such as captopril, enapril and other angiotensin-
converting enzyme inhibitors (Sugiyama, T. et al. Aldoster-
one induces angiotensin converting enzyme gene expression
via a JAK2-dependent pathway in rat endothelial cells. Endo-
crinology 146, 3900-6 (2005)).

Theoretical Analysis on Yeast Metabolic Network

We extended the results to the much larger well-studied
yeast metabolic network'’, which contains 359 nodes and
435 edges in FIG. 7B. Again, despite the additional complex-
ity and increased size of the network, nodes involved in bridg-
ing larger modules to each other were selectively identified.

We examined several characteristics of bridging nodes
using node deletion (FIGS. 8A-8F). Nodes with the highest
values of bridging centrality (or other network metrics) were
sequentially removed and the Neyman-Pearson divergence
(NPD), a measure of the distance between two distributions,
was used to assess the changes to network properties relative
to the intact network.

The removal of nodes with high bridging centrality values
causes changes to the path length distribution that are com-
parable to the changes that occur with degree cut and pager-
ank cut (FIG. 8A). The changes to path lengths with degree
cut and pagerank cut are not unexpected because these met-
rics by definition target nodes with numerous edges. Because
of their broad specificity, these metrics also cause relatively
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large changes to the clustering coefficient (FIG. 8B) and
degree distributions (FIG. 8C) and rapid generation of iso-
lated singletons (FIG. 8F) indicating that the removal of
nodes based on these metrics leads to loss of structural integ-
rity. The removal of the high clustering coefficient nodes
results in the removal of nodes that are not critical in part
because the high inter-connectivity among neighbors pro-
vides alternative paths to signal flow. Although the clustering
coefficient cut retained network structural integrity, it was
also associated with the least changes to the path length
distribution. The betweeness cut showed comparable behav-
iors with bridging centrality in the clustering coefficient,
degree, module size distribution NPD, and singleton produc-
tion. However, its ability to cause network disruption as
assessed by the path length NPD was abruptly weakened after
the 3" percentile and the average module sizes were smaller.
In contrast, removal of nodes based on bridging centrality
causes comparatively small changes to the clustering coeffi-
cient (FIG. 8B) and degree distributions (FIG. 8C). Further-
more, the loss of network modularity (FIG. 8D-E) and gen-
eration of singletons (FIG. 8F) is also comparatively low
when nodes with high bridging centrality are targeted. Con-
sequently, targeted deletions of nodes with high bridging
centrality cause large disruptions to the network without
causing the high extensive loss of structural integrity that is
associated with the other metrics. Bridging centrality pre-
serves the network structural integrity and the modularity
better than the other metrics.

The experiments demonstrate that bridging nodes occupy
critical locations in the network and that bridging centrality
uniquely complements the other network metrics.

Discussion and Conclusion

Jeong’s group has espoused the degree of a node as a key
basis for essential components identification. These high
degree nodes are called hubs, and hubs have been found to be
important determinants of survival in network perturbation.
Power-law networks are very robust to random attacks but
very vulnerable to targeted attack in this model. Hahn’s group
looked for differences in degree, betweenness, and closeness
centrality between essential and nonessential genes in three
eukaryotic protein interaction networks: yeast, worm, and fly.
These three interaction networks are found to have remark-
able similar structure and the proteins that have a more central
position in networks, regardless of the number of direct inter-
actors, evolve more slowly and are more likely to be essential
for survival. Estrada’s group introduces a new centrality mea-
sure, which is called subgraph centrality that characterizes the
participation of each node in all subgraphs in a network. The
subgraph centrality is better able to discriminate the lethal
nodes of a network than any other measures in protein inter-
action networks. Palumbo’s group tried to find lethal nodes
by arc deletion, which could lead to sub components isola-
tion. They showed that lethality corresponds to the lack of
alternative paths in the perturbed network linking the nodes
affected by the enzyme deletion on yeast metabolic network
which is a directed network. Existing approaches are focusing
only on finding central and lethal nodes, and it has been
proven that these existing approaches can discriminate lethal
nodes very well. We argue that identifying network’s essen-
tial components with these existing methods is likely to prove
suboptimal because of their limited view of looking at the
problem. Guimera’s group devised a clustering method to
identify functional modules in metabolic pathways and cat-
egorized the role of each component in the pathway according
to their topological location relative to detected functional
modules. Annotating locality of components in network’s
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topology based on a certain clustering method is totally
biased by the used clustering method. So identifying compo-
nents’ topological location, e.g., hubs, peripheral nodes, or
bridging nodes, independent from any other methods is more
preferable.

While other existing approaches are focusing on targeting
high degree, high central, and high lethal components in
network topology, our bridging centrality discriminates the
bridging nodes with more information flowed through them,
i.e., more central from the information flow aspect, and also
positioned between highly connected regions. We have
shown that bridging centrality successfully distinguishes the
bridging nodes in several real world scale-free networks
including social, biological, and technical networks. Theo-
retical analysis of the yeast metabolic network, observing the
clustering coefficient changes and the average path length
behaviors, were performed and showed that the nodes picked
up by bridging centrality are well positioned on the connect-
ing spots between modules.

Throughout the performed experiments, bridging central-
ity did a great job on identifying the bridging nodes in real
world networks. Bridging centrality has many possible appli-
cations on many research areas. The recognition of the bridg-
ing nodes and information about the bridging nodes should be
very valuable knowledge for further fruitful achievements in
biological researches and in other fields too. For example,
identifying functional or physical modules or identifying the
key components in biological networks using the bridging
centrality will provide a very effective and totally new way of
looking biological network structures. This promising out-
come should also be applicable to social networks for detect-
ing sub community structures or discovering the key elements
in them. As we observed in the previous section, while the
perturbations on hubs or the nodes selected by other centrality
indices caused a few local singleton isolations and might have
many alternative paths due to their high clustering property,
which is one of the main properties of the scale-free networks,
among neighbors inside the module, the failures on the bridg-
ing nodes, unsurprisingly, caused whole module isolations
from the rest of the network and might have longer alternative
paths or no alternative path at all. So the interruptions on the
bridging nodes could be much more lethal, and the cost of
network failure by interrupting the bridging nodes would be
much higher than the failure on the other nodes. Therefore,
we claim that the bridging nodes picked up by bridging cen-
trality also reside on the critical positions and also are worth
getting attentions for the network robustness improvement
and paths protection standpoint.

It was clearly shown that the bridging nodes discriminated
by bridging centrality are well positioned between highly
connected modules in scale-free networks. Using this bridg-
ing centrality superiority, clustering analysis on scale-free
networks can be accomplished through differentiating mod-
ules by considering the bridging nodes as the boundary of
clusters.

Application of Invention
The following illustrates a practical application of the
invention:

Functional Module Detection via Topological Analysis of
Protein Interaction Networks

Recent computational analyses of protein interaction net-
works have attempted to discover valuable information of
cellular functions. One important feature of the protein inter-
action networks is hierarchical modularity. Clustering is one
ofthe most efficient techniques for comprehensive analysis of
such modular networks. In this work, a new modular network
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model was applied for the protein interaction network and
provided a systematic analysis in a topological view. An
accurate and efficient approach for modularization is pre-
sented. The algorithm focuses on detecting the interconnec-
tions among modules, which are defined as bridges. As
results, the method identifies the modules that correspond to
functional associations. Furthermore, it outperforms other
previous clustering algorithms.

Introduction

The complete and systematic analysis of protein-protein
interactions is one of the most fundamental challenges to
understand cellular organizations, processes and functions.
The interactions between two proteins provide clues to iden-
tify functional modules. Recent large-scale experiments of
protein-protein interactions, such as two-hybrid systems and
mass spectrometry, have enriched interaction data, and led to
build the integrated protein interaction networks. The current
huge volume of protein interaction data has raised difficulty
to be experimentally analyzed. Consequently, computational
analysis of the networks has been necessarily concerned to
determine functionally associated proteins. However, previ-
ous analyses of protein interaction networks have suffered
from the complexity of the networks and large amounts of
noisy data.

Various clustering approaches have been applied to protein
interaction networks to discover valuable information of cel-
lular functions. Clustering is the process of grouping data
objects into clusters which demonstrate greater similarity
among objects in the same cluster than in different clusters.
The functions of uncharacterized proteins can be predicted by
the clustering results of the protein interaction networks.
Since the protein interaction network can be represented as an
undirected, unweighted graph with proteins as nodes and
interactions as edges, most of the previous clustering
approaches have utilized graph topology such as the connec-
tivity of nodes. Several methods focus on detecting densely
connected sub-graphs as clusters. In this definition, clusters
can be determined by maximizing a density function. A major
drawback of this work is that it ignores large numbers of
nodes that are sparsely connected. Another approach intro-
duced is an algorithm that partitions a network into clusters
based on minimum cutting cost. It may be problematic
because of a bunch of clusters whose sizes are very small.
Betweenness was applicable to detect the best position for
partitioning a network. Betweenness is a measure to find
centrally located nodes in a graph. However, it is biased to the
nodes with high connectivity. Therefore, clustering by
removing the nodes or edges with high betweenness values
may overlook informative objects of a protein interaction
network.

This study explores the topological structure of protein
interaction networks. Previous works have observed that
most biological networks are scale-free, which means the
degree distribution of the networks is approximated by a
power law P(k)~k™¥, where k is the degree of each node and
2=y=3. An important feature of the scale-free networks is
that many low-degree nodes are frequently connected to a
very few high-degree nodes with short-length paths by small
world property. A recent study introduced hierarchical modu-
larity in scale-free networks. In a modular network model, a
meodule is formed by densely connected core nodes, and two
modules are linked by sparse interconnections between two
nodes in different modules. This work proposes a new strat-
egy to systematically analyze modular networks. First, cat-
egorize the components in a network based on their topologi-
cal roles. Next, quantify how likely each node or edge works
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for interconnecting modules. Finally, an algorithm is pre-
sented to discover functional modules from the protein inter-
action networks. The method identifies modules by precisely
detecting the interconnections among the modules.

Method
Topological Modeling for Modular Networks

The protein interaction network is represented as an undi-
rected, unweighted graph G(V,E) with proteins as a set of
nodesV and interactions as a set ofedges E. A set of neighbors
ofv,, N(v,), is denoted as a set of nodes directly connected to
v;IN(v,)l is the number of nodes in N(v,), which equals the
degree of v,, deg(v,).

A module (or a cluster) G'in G is a sub-graph of G whose
nodes have homogeneous features. In real biological or social
networks, modules (or clusters) are interconnected each
other. A part of nodes in each module participates in the
interconnections. The clustering problem of such a modular
network is to determine a complete set of modules (or clus-
ters) in the graph.

In a topological view of a network, nodes in a module can
be categorized into three groups, modular nodes, peripheral
nodes and interconnecting nodes. First, modular nodes are the
core nodes to form a module. They have relatively high
degree of connectivity to the members in the same modules.
Next, peripheral nodes are the trivial nodes with low degree.
They are linked to modular nodes or the other peripheral
nodes in the same module. Last, interconnecting nodes are
connected to the nodes in the other modules. We define the
edge that connects two nodes in different modules as a bridge.
Therefore, two end nodes of a bridge should be interconnect-
ing nodes. In FIG. 9(a), five dark gray nodes represent inter-
connecting nodes. Light gray and white nodes are modular
nodes and peripheral nodes, respectively. Three thick edges
are bridges connecting two modules. FIG. 9(a) illustrates the
three types of nodes in a simple network that is composed of
two modules.

Whereas two modules are directly connected by a bridge in
many cases, one node sometimes exists in the middle of the
bridge for the purpose of supporting the interconnection. It is
denoted as a bridging node. The bridging node is linked to two
or more interconnecting nodes in different modules. If we
consider a network as an information flow, such bridging
nodes are the most critical for maintaining the whole network.
In FIG. 9(b), a black node represents bridging nodes. Three
dark gray nodes are interconnecting nodes, and three thick
edges are bridges connecting from the bridging node to each
module. FIG. 9(b) displays two modules connected from a
bridging node.

In our modular network model, the bridges and bridging
nodes can be hierarchically distributed. As a network consists
of several modules connected by bridges, each module can
possess several sub-modules connected by sub-bridges. This
hierarchical structure is an essential concept for the system-
atic analysis of a network.

Modularity and Similarity

Modularity is an important measureto assess the denseness
of a graph or a sub-graph. For a given graph or sub-graph
G(V.E), modularity M(G(V,E)) can be computed by counting
actual intra-connections in a module over all possible edges
among the nodes in the module:
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Notice that By, is the set of edges that connect between
two nodes in N(v). Then M(G'(N(v).E,,,)) is equivalent to
the clustering coefficient of a node v.

Node similarity is another useful index to determine mod-
ules from a graph. By the concept of set similarity, two nodes
are considered similar if they share many of neighbors. High
similarity between two nodes then indicates that the two
nodes are plausible to be in the same module. Among a variety
of set similarity indices, we used Simpson’s coefficient for
this work. Suppose X, is a set of neighbors of v including v
itself. The similarity S,, of two nodes s and t can be computed

by

XN )

" min( X, [X)

st

Consideralow degree node s and a high degree node t in the
same functional module. Suppose they are linked each other,
and N(s) is a small subset of N(t). As frequently appeared in
biological networks, the node s may be selectively linked to
its partner due to biochemical issues. In this case, we can
explicitly judge that s and t are included in the same module
by formula (2).

Hierarchical Modularization

The goal of this work is to accurately and efficiently iden-
tify functional modules in complex protein interaction net-
works. Our modularizing algorithm is designed to hierarchi-
cally generate modules by removing bridging nodes and
bridges. The algorithm is based on two processes as follows:

Process 1. (Removal of bridging nodes) This is the process
to compute the bridging score B,(v) for each node v and
successively remove v with the highest value of B,(v) until the
graph is split into sub-graphs or the clustering coefficient of
the graph reaches a given threshold.

Process 2. (Removal of bridges) This is the process to
compute the bridging score B,(e) for each edge e and succes-
sively remove e with the highest value of B, (e) until the graph
is split into sub-graphs.

The process 1 can be switched to process 2 according to the
clustering coefficient C(G) of a graph G. The clustering coef-
ficient C, of a node v is calculated by the actual edges in N(v)
divided by all possible edges in N(v). The clustering coeffi-
cient C(G) of a graph G is then defined as the average clus-
tering coefficient of all nodes in G. When a bridging node is
removed from amodular network G, the clustering coefficient
C(G") of the new graph G' is increased because G' is more
modular than G. If we successively remove the nodes in G
starting from the top bridging node, then the graphs will show
a pattern of increase of clustering coefficients until all poten-
tial bridging nodes are removed. Therefore, the end of the
increasing pattern can be a noticeable switching point from
process 1 to process 2. Consider AC as the difference of
clustering coefficients between a graph G and a reduced graph
G'. Process 1 then requires the condition such that AC—C
(G")-C(G)>0 and can be switched to process 2 when AC=C
(GY-C(G)=0. The details of the typical patterns of clustering
coefficients in a modular network will be discussed in the next
section.
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The whole algorithm of the hierarchical modularization,
BridgeCut, is described in Algorithm 1. The input is a graph
of protein interaction network, G(V; E), and each module
generated by the algorithm is added into the list L, which is
a global variable. The algorithm traces the recursion tree, as it
calls the entire procedure recursively with each module as an
input, from the top level to the bottom level. The modules that
created from lower level have smaller number of nodes and
generally higher modularity than those from higher level. The
algorithm terminates each recursive procedure when the size
of the module reaches the threshold 6, as a minimal size, or
the modularity is greater than or equals to a given threshold
0

e

Algorithm 1: BridgeCut (G(V,E)).

1: iflVI<8, or M(G)=0,, then
2: insert G into L
3: else
4: compute B,(v) for each node vin G
5: while G is not split do
6: if AC <0 then
7 compute B, (e) for each edge ¢ in G
8: break while
9: end if
10: remove a node v with highest B,(v) from G
11: end while
12: while G is not split do
13: remove an edge e with highest B,(e) from G
14: end while
15: for each sub-graph G'(V',E") do
16: BridgeCut(G'(V,E"))
17: end for
18: end if

Experiments and Results

Topological Analysis

‘We obtained core protein interaction data of Saccharomy-
ces cerevisiae from January 2006 version of DIP, the database
of interacting proteins, which contains 2526 distinct proteins
and 5949 interactions. The core interactions were selected
from full data by verifying the reliability of each interaction
using other biological information, such as protein sequences
and RNA expression profiles. The degree distribution of the
core data set demonstrates that the network is scale-free with
y=~2. Furthermore, by the inverse dependence of the clustering
coefficient of each node on degree, we can judge that the core
data set forms the hierarchical modular network structure.

In our modular network model, bridging nodes intercon-
nect two or more modules, each of which has higher modu-
larity than the entire network. Therefore, removing the bridg-
ing nodes can increase the modularity of the network. We
computed the clustering coefficient of each network while we
successively delete the bridging node with the highest B (v).
In FIG. 10, the range (I) refers to the top 15% of removal
steps, (II) refers to the next 15%, (I11) refers to the next 30%,
and (IV) refers to the rest. Bridging nodes, interconnecting
nodes, modular nodes, and peripheral nodes are mostly
removed, respectively, in (I), (IT), (III), and (IV). FIG. 10
exhibits the alterations of clustering coefficients of the net-
works, each of which is reduced from a previous network by
one node. We can observe four distinctive patterns in the
result. In the first 15% of the sequence of networks, the
clustering coefficients were gradually increased. In the next
15%, they were fluctuated within a small range. In the next
30%, they were dramatically decreased. In the others, they
were 0. These patterns reveal the four classes of nodes in a
modular network, which represent bridging nodes, intercon-
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necting nodes, modular nodes, and peripheral nodes. The
bridging nodes were mostly removed in the first 15% of the
deleting steps, the interconnecting nodes in the next 15%, and
the modular nodes in the next 30%. Hence, the result of this
experiment can approximate the amount of bridging nodes in
a network. In the core protein interaction network, around
30% of nodes perform the role of interconnecting modules at
the top level of hierarchy. Half of them work for only bridg-
ing.

Biological Analysis

Lethality is a crucial factor to characterize the biological
essentiality of a protein. It is determined by examining
whether a module is functionally disrupted when the protein
1s knocked out. We obtained the protein lethality information
from MIPS database, which reports whether a protein is lethal
or viable.

To investigate the biological importance of nodes, we
scaled the proportion of lethality with bridging scores in FIG.
11. After sorting all nodes by bridging scores in descending
order, we grouped them into 7 bins and calculated the pro-
portion of lethal proteins in each bin. The first bin has lower
lethality than the entire core data, and the lethality is
increased up to the fifth bin. The last two bins include only a
few lethal nodes. This behavior can be divided into the four
groups regarding to the topological classes of nodes as
described in the previous section. Bridging nodes are domi-
nated in the first bin, which has relatively low lethality. Inter-
connecting nodes mainly occupy the next bin, which has
higher lethality than the first bin. Modular nodes and periph-
eral nodes have the highest and lowest proportion of lethal
proteins, respectively. This result implies that many of the
bridging nodes do not perform critical tasks for biological
functions. This experiment proves that the biological impor-
tance of nodes can be properly analyzed by the topological
structure of networks.

Modularization Results

We implemented our hierarchical modularization algo-
rithm with core protein inter-action data from DIP. As the
thresholds for the size 6, and modularity 6,, in Algorithm 1,
15 and 30% are empirically chosen, respectively. For AC, we
compared the clustering coefficient of current network G with
the predecessor G" that occurred 3 steps before, that is,
AC=C(G")-C(G). Among all modules generated by our algo-
rithm, we selected 123 modules with the size greater than or
equal to 5.

To validate that our algorithm successfully recognizes
functional modules, we used the comprehensive functional
catalogue provided by MIPS. The catalogue hierarchically
arranges the functions and consists of 17 different functional
categories on the top level. We assigned one major function
out of 17 to each module generated by our algorithm. We
evaluated the modules by monitoring the p-values based on
the hypergeometric distribution, as several previous works
used, such that

(IXI ](IVI—IXI]
k-1 . X
p=1 _Z YA rTE S
= ()
n
where V| is the total number of nodes, I1X| is the number of

nodes in the major functional category, n is the number of
nodes in a module, and k is the number of common nodes
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between the functional category and the module. The formula
(9) can be understood as the probability that at least k nodes
in a module with size n are included in a particular category
with size IXI. Low p-value signifies that the module is highly
accurate because the network has a rare chance to produce the
module. The top 20 modules in p-value generated by our
algorithm are listed in Table 2.

TABLE 2

Top 20 modules in p-value generated by our modularization
algorithm. BridgeCut.

Cluster Assigned Major -log Uncharacterized
Size  Function (p-value)  Protein
133 Cellular 41.93 YBL049w, YDRO®4c,
Transport YLR124w, YBR187w,
YCRO76c, YNL181w
99 Transcription 23.17 YPL105¢c, YKLO23w,
YHRO35w, YNLO30c,
YBRO94w, YKL183w,
35  Cell Type Differ- 14.88 YER158¢
entiation
15 Interaction with 14.07
Cell Environment
18 Energy 13.76
39  Transcription 13.58 YFRO11c
28 Cell Cycle and 13.57 YHL023¢, YLR123¢
DNA Processing
19 Cell Fate 13.23 YMLO53¢
9  Protein Synthesis 8.77
21 Transcription 8.73 YGR210¢
17 Biogenesis of 7.87
Cellular
Components
20 Transcription 7.72 YLR358¢c, YLR322w
44 Protein Fate 7.55 YILO64w
9 Cellular 7.50 YFR044c
Communication
14 Transcription 7.26
7 Protein Synthesis 7.25 YLR287¢c
11 Cellular 6.55
Transport
10 Protein Synthesis 6.46
16  Protein with 6.28
Binding Function
15 Cell Cycle and 6.21

DNA Processing

Two previous methods were also implemented: highest
betweenness node cut and highest betweenness edge cut. In
the same way, the modules, whose sizes are greater than or
equal to 5, were collected. Table 3 compares the overall
performance of our algorithm, BridgeCut, with the two meth-
ods. First, the modules by BridgeCut are larger on average
than those by the other methods. Since betweenness node cut
produced too many tiny clusters, it ignored a large amount of
nodes, which may be important members in modules. Next,
based on the p-values, the modules by Bridge-Cut are more
accurate than those by the others. In particular, BridgeCut
surpassed betweenness edge cut in the number of highly
accurate modules. These results indicate that our algorithm
determined some modules that are closer to the real func-
tional modules than the other methods. Finally, to investigate
the significance of modules, it was examined whether each
module is governed by hub nodes with high connectivity.
When a node with the highest degree in each module was
considered, the average value of all modules by BridgeCut
was the highest of all three methods. This result implies that
BridgeCut evenly partitioned the network in terms of the
connectivity, and most of modules by BridgeCut are mean-
ingful in a topological structure of the network. Conse-
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quently. BridgeCut clearly outperformed the other two meth-
ods in all categories in Table 3.

TABLE 3
Comparison of modularization results.
Betweenness Betweenness
Category BridgeCut  Node Cut Edge Cut
Number and Size of Modules
total number of modules 123 100 120
average size of modules 13.08 10.59 12.96
largest size of modules 133 46 79
Accuracy of Modules
average in pScore 4.01 3.30 3.89
average of top 20 in pScore 11.45 7.89 10.55
number of modules with 21 12 21
pScore > 6
number of modules with 8 4 5
pScore > 12
Significance of Modules
average in maximum degrees 18.57 7.69 14.64
pScore represents —log (p-value).
CONCLUSION

A new modular network model, has been developed which
is applicable to protein interaction networks. An accurate and
efficient approach for modularization has been presented
based on the systematic analysis of the network in a topologi-
cal view.

The major strength of the method is the accuracy of the
modularization results. It has been proved in Table 3. The
functional catalogue in MIPS shows that there are still large
number of functionally uncharacterized proteins in the yeast
database even though the yeast is one of the most well-studied
organisms. The ultimate aim of bioinformatics research is to
precisely predict biological functions of such unknown pro-
teins. Our approach provided a novel strategy to predict the
functions. Each module generated by our algorithm contains
a few uncharacterized proteins, which are listed in Table 2. It
is suggested that those proteins positively work for the cor-
responding functions that are assigned to the modules.

The algorithm efficiently runs with a huge protein interac-
tion network. The time complexity of the algorithm depends
on the computation of betweenness. It is currently able to be
computed in O(nm) time where n is the number of nodes and
m is the number of edges. Furthermore, the successive dele-
tion of interconnections among modules can quickly simplify
the complex network.

One of the main difficulties of current interaction network
analysis is the enormous amount of noisy data. The numerous
false positives result in an extremely biased topelogical struc-
ture of the network. Besides our topological analysis, the
reliability assessment of protein-protein interactions using
any other biological knowledge can strongly enhance the
performance of the network analysis.

FIG. 12 is a schematic block diagram of present invention
apparatus 100 for identifying a bridge node in a network.
Apparatus 100 includes: determining elements, or functions,
102 and 104 in processor 106 for specially programmed gen-
eral-purpose computer 108. Element 102 is arranged, foreach
first node (not shown) in a plurality of nodes (not shown) in a
network (not shown), to determine global metric 110 propor-
tional to total signal flow in the network and signal flow
through each first node. Element 104 is arranged, for each first
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node, to determine local metric 112 proportional to signal
flow between each first node and each second node (not
shown) inthe network connected to each first node. Apparatus
100 also includes calculating element, or function, 114 in the
processor. Element 114 is arranged to calculate, for each first
node, using memory element 116 in the general-purpose
computer, combination 118 of global metric 110 and said
local metric 112. Apparatus 100 includes selecting element
120 in the processor arranged to select, using the memory
element, a bridge node (not shown) from among the plurality
of nodes based on said combinations 118.

In some aspects, element 104 is arranged to determine, for
each first node, local metric 122 proportional to signal flow
(not shown) between each first node and each second node
and signal flow between each second node and each third
node in said network connected to at least one of the second
nodes. In some aspects, element 104 is arranged to determine,
for each first node, local metric 124 proportional to the largest
and second largest signal flows from among the respective
signal flows between each first node and each second node. In
some aspects: global metric 110 includes the signal flow
through each first node divided by the total signal flow in the
network; a denominator for local metric 122 is the signal flow
between each first node and each second node; local metric
124 is the second largest signal flow divided by said largest
signal flow; the calculating element is arranged to calculate
product 126 of the global metric and local metrics 122 and
124 for each first node; and the selecting element is arranged
to select the first node with the largest product as a bridge
node. In some aspects, element 102 is arranged to determine,
for each first node, global metric 128 proportional to a total
number of paths connecting node pairs in the network and a
total number of these paths connected to each first node (not
shown).

Computer 108 can be any computer or combination of
computers known in the art. Memory element 116 and pro-
cessor 106 can be any memory element or processor, or
combination thereof, known in the art.

Thus, it is seen that the objects of the invention are effi-
ciently obtained, although changes and modifications to the
invention should be readily apparent to those having ordinary
skill in the art, without departing from the spirit or scope of
the invention as claimed. Although the invention is described
by reference to a specific preferred embodiment, it is clear
that variations can be made without departing from the scope
or spirit of the invention as claimed.

What is claimed is:
1. A method for identifying a bridge node in a network,
comprising the steps of:

determining, for each first node in a plurality of nodes in
said network, using a processor in a specially pro-
grammed special purpose-purpose computer, a global
metric proportional to total signal flow in said network
and signal flow through said each first node;

determining, for said each first node using said processor,
a first local metric proportional to signal flow between
said each first node and each second node in said net-
work connected to said first node and signal flow
between said each second node and each third node in
said network connected to at least one of said each
second node;

determining, for said each first node using said processor,
a second local metric proportional to a largest and sec-
ond largest signal flows from among the respective sig-
nal flows between said each first node and said each
second node;
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calculating, for said each first node using said processor
and a memory element in said general-purpose com-
puter, a combination of said global metric and said first
and second local metrics; and,

selecting, using said processor and said memory element, a

bridge node from among said plurality of nodes based on
said combinations.
2. The method of claim 1 wherein said global metric com-
prises said signal flow through said each first node divided by
said total signal flow, wherein a denominator for said first
local metric comprises said signal flow between said each first
node and each second node, wherein said second local metric
comprises said second largest signal flow divided by said
largest signal flow, wherein calculating a respective combi-
nation comprises calculating a respective product of said
global metric and said first and second local metrics for said
each first node, and wherein selecting a bridge node com-
prises selecting said each first node with a highest said respec-
tive product.
3. A method for identifying a bridge node in a network,
comprising the steps of:
determining, for each first node in a plurality of nodes in
said network, using a processor in a specially pro-
grammed special purpose-purpose computer, a global
metric proportional to total signal flow in said network
and signal flow through said each first node;

determining, for said each first node using said processor,
a local metric proportional to signal flow between said
each first node and each second node in said network
connected to said each first node;

calculating, for said each first node using said processor

and a memory element in said general-purpose com-
puter, a combination of said global metric and said local
metric; and,

selecting, using said processor and said memory element, a

bridge node from among said plurality of nodes based on
said combinations.

4. The method of claim 3 wherein determining a local
metric comprises:

determining, for said each first node using said processor,

a first local sub-metric proportional to said signal flow
between said each first node and said each second node
and signal flow between said each second node and each
third node in said network connected to at least one of
said each second node; and,

determining, for said each first node using said processor,

a second local sub-metric proportional to the largest and
second largest signal flows from among the respective
signal flows between said each first node and said each
second node.

5. The method of claim 4 wherein said global metric com-
prises said signal flow through said each first node divided by
said total signal flow, wherein a denominator for said first
local sub-metric comprises said signal flow between said each
first node and each second node, wherein said second local
metric is equal to said second largest signal flow divided by
said largest signal flow, wherein calculating a respective com-
bination comprises calculating a respective product of said
global metric and said first and second local sub-metrics for
said each first node, and wherein selecting a bridge node
comprises selecting said each first node with a highest said
respective product.

6. A method for identifying a bridge node in a network,
comprising the steps of:

determining, for each first node in a plurality of nodes in

said network, using a processor in a specially pro-
grammed special purpose-purpose computer, a global
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metric proportional to a total number of paths connect-
ing node pairs in said network and a total number of said
paths connected to said each first node;

determining, for said each first node using said processor,
a local metric proportional to signal flow between said
each first node and each second node in said network
connected to said each first node;

calculating, for said each first node using said processor
and a memory element in said general-purpose com-
puter, a combination of said global metric and said local
metric; and,

selecting, using said processor and said memory element, a
bridge node from among said plurality of nodes based on
said combinations.

7. The method of claim 6 wherein determining a local

metric comprises:

determining, for said each first node using said processor,
a first local sub-metric proportional to said signal flow
between said each first node and said each second node
and signal flow between said each second node and each
third node in said network connected to at least one of
said each second node; and,

determining, for said each first node using said processor,
a second local sub-metric proportional to the largest and
second largest signal flows from among the respective
signal flows between said each first node and said each
second node.

8. The method of claim 7 wherein said global metric com-
prises said total number of said paths connected to said each
first node divided by said total number of paths connecting
node pairs in said network, wherein a denominator for said
first local sub-metric comprises said signal flow between said
each first node and each second node, wherein said second
local metric is equal to said second largest signal flow divided
by said largest signal flow, wherein calculating a respective
combination comprises calculating a respective product of
said global metric and said first and second local sub-metrics
for said each first node, and wherein selecting a bridge node
comprises selecting said each first node with a highest said
respective product.

9. An apparatus for identifying a bridge node in a network,
comprising:

a first determining element in a processor in a specially
programmed special purpose-purpose computer
arranged, for each first node in a plurality of nodes in
said network, to determine a global metric proportional
to total signal flow in said network and signal flow
through said each first node;

a second determining element in said processor arranged to
determine, for said each first node, a first local metric
proportional to signal flow between said each first node
and each second node in said network connected to said
first node and signal flow between said each second node
and each third node in said network connected to at least
one of said each second node;

a third determining element in said processor arranged to
determine, for said each first node, a second local metric
proportional to a largest and second largest signal flows
from among the respective signal flows between said
each first node and said each second node;

a calculating element in said processor arranged to calcu-
late, for said each first node, using a memory element in
said general-purpose computer, a combination of said
global metric and said first and second local metrics;
and,
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a selecting element in said processor arranged to select,
using said memory element, a bridge node from among
said plurality of nodes based on said combinations.

10. The apparatus of claim 9 wherein said global metric
comprises said signal flow through said each first node
divided by said total signal flow, wherein a denominator for
said first local metric comprises said signal flow between said
each first node and each second node, wherein said second
local metric comprises said second largest signal flow divided
by said largest signal flow, wherein said calculating element is
arranged to calculate a respective product of said global met-
ric and said first and second local metrics for said each first
node, and wherein said selecting element is arranged to select
said each first node with a highest said respective product.

11. An apparatus for identifying a bridge node in a network,
comprising:

a first determining element in a processor in a specially
programmed general-computer arranged, for each first
node in a plurality of nodes in said network, to determine
a global metric proportional to total signal flow in said
network and signal flow through said each first node;

asecond determining element in said processor arranged to
determine, for said each first node, a local metric pro-
portional to signal flow between said each first node and
each second node in said network connected to said each
first node;

a calculating element in said processor arranged to calcu-
late, for said each first node, using a memory element in
said general-purpose computer, a combination of said
global metric and said local metric for said each first
node; and,

a selecting element in said processor arranged to select,
using said memory element, a bridge node from among
said plurality of nodes based on said combinations.

12. The apparatus of claim 11 wherein said second deter-

mining element is arranged to:

determine, for said each first node using said processor, a
first local sub-metric proportional to said signal flow
between said each first node and said each second node
and signal flow between said each second node and each
third node in said network connected to at least one of
said each second node; and,

determine, for said each first node using said processor, a
second local sub-metric proportional to the largest and
second largest signal flows from among the respective
signal flows between said each first node and said each
second node.

13. The apparatus of claim 12 wherein said global metric
comprises said signal flow through said each first node
divided by said total signal flow, wherein a denominator for
said first local sub-metric comprises said signal flow between
said each first node and each second node, wherein said
second local metric comprises said second largest signal flow
divided by said largest signal flow, wherein said calculating
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element is arranged to calculate a respective product of said
global metric and said first and second local sub-metrics for
said each first node, and wherein said selecting element is
arranged to select said each first node with a highest said
respective product.

14. An apparatus for identifying a bridge node in a network,
comprising:

a first determining element in a processor for a specially
programmed special purpose-purpose  computer
arranged, for each first node in a plurality of nodes in
said network, to determine a global metric proportional
to a total number of paths connecting node pairs in said
network and a total number of said paths connected to
said each first node;

a second determining element in said processor arranged to
determine, for said each first node, a local metric pro-
portional to signal flow between said each first node and
each second node in said network connected to said each
first node;

a calculating element in said processor arranged to calcu-
late, for said each first node using a memory element in
said general-purpose computer, a combination of said
global metric and said local metric for said each first
node; and,

a selecting element in said processor arranged to select,
using said memory element, a bridge node from among
said plurality of nodes based on said combinations.

15. The apparatus of claim 14 wherein said second deter-

mining element is arranged to:

determine, for said each first node using said processor, a
first local sub-metric proportional to said signal flow
between said each first node and said each second node
and signal flow between said each second node and each
third node in said network connected to at least one of
said each second node; and,

determine, for said each first node using said processor, a
second local sub-metric proportional to the largest and
second largest signal flows from among the respective
signal flows between said each first node and said each
second node.

16. The apparatus of claim 15 wherein said global metric
comprises said signal flow through said each first node
divided by said total signal flow, wherein a denominator for
said first local sub-metric comprises said signal flow between
said each first node and each second node, wherein said
second local metric comprises said second largest signal flow
divided by said largest signal flow, wherein said calculating
element is arranged to calculate a respective product of said
global metric and said first and second local sub-metrics for
said each first node, and wherein said selecting element is
arranged to select said each first node with a highest said
respective product.



